检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张燕艳 李韵 王素[1] ZHANG Yanyan;LI Yun;WANG Su(School of Sciences,Nantong University,Nantong 226019,China;Basic Teaching Institute,Nantong Institute of Technology,Nantong 226002,China;Nantong University Xinglin College,Nantong 226007,China)
机构地区:[1]南通大学理学院,江苏南通226019 [2]南通理工学院基础教学学院,江苏南通226002 [3]南通大学杏林学院,江苏南通226007
出 处:《南通大学学报(自然科学版)》2018年第2期50-54,共5页Journal of Nantong University(Natural Science Edition)
基 金:国家自然科学基金项目(11371207)
摘 要:设整数k>0,n≥2,简单正交多阵SOMA(k,n)是一个n×n的方阵A,它的每一个单元格包含kn-元集S的一个k-元子集且满足:1)S的每个元素在A的每一行和每一列恰好出现一次;2)S的每个2-元子集至多出现在A的一个单元格中.总结了SOMA(k,n)存在的最新结果,并且阐述了它和相互正交拉丁方之间的关系,同时通过直接构造的方法证明了n≥5,SOMA(4,n)的存在性,并且提出了进一步研究的问题.Let k 0 and n ≥ 2 be integers. A simple orthogonal multi-array SOMA(k, n) is an n × n array A each of whose entries is a k-subset of a kn-set S of symbols, such that every symbol of S occurs exactly once in each row and exactly once in each column of A, and every 2-subset of S is contained in at most one entry of A. In this note, it is summarized that the latest results of the existence of a SOMA(k, n) and explain the relationship between it and mutually orthogonal Latin squares, and by direct construction show that there exists a SOMA(4, n) for n ≥ 5.And further research questions are also put forward.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49