检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁波[1] 吴晓琴 张振宇[1] LIANC Bo;WU Xiaoqin;ZHANG Zhenyu(School of Mathematics and Physics,Dalian Jiaotong University,Dalian 116028,China)
出 处:《大连交通大学学报》2018年第5期114-117,共4页Journal of Dalian Jiaotong University
基 金:国家自然科学基金资助项目(11501076);辽宁省教育厅高等学校科研计划资助项目(JDL2016029);辽宁省自然科学基金资助项目(20170540136)
摘 要:研究了一类四阶抛物方程在一维情况下的时间周期解的存在性问题.方程形式上,最高阶为四阶线性微分项,低阶部分为二阶非线性微分项,赋予方程时间周期条件和边界条件.主要运用Galerkin方法构造基底及近似解,应用Leray-Schauder不动点定理得到该方程对应的线性方程解的存在性,利用近似解的一致性估计,并利用渐近极限的讨论,得到该方程时间周期解的存在性.This paper is devoted to studying the existence of time-periodic solutions of a fourth-order parabolic equation in one-dimensional space. Formally,the highest-order part is a fourth-order linear differential term,and the lower-order is a second-order nonlinear differential term. Moreover,the time-periodic and boundary conditions are added for this problem. The Galerkin method is used to construct a base and the corresponding approximate solutions,and then the Leray-Schauder fixed-point theorem is applied to get the existence of the corresponding linear equation. By the uniform estimates of the approximate solutions and the argument of asymptotic limits,the existence of time periodic solutions of this equation is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222