基于类间方差和离散余弦变换的模板匹配哈希目标跟踪  

Template Matching Hash Target Tracking Based on Interclass Variance and Discrete Cosine Transform

在线阅读下载全文

作  者:李海彪 黄山[2] LI Hai-biao;HUANG Shan(Sichuan University,a.College of Electrical Engineering and Informatio;b.College of Computer Science,Chengdu 610065,China)

机构地区:[1]四川大学电气信息学院,成都610065 [2]四川大学计算机学院,成都610065

出  处:《电光与控制》2018年第10期47-51,共5页Electronics Optics & Control

摘  要:针对基于离散余弦变换的压缩感知哈希算法在光照变化、目标发生形变或者局部遮挡的情况下难以跟踪的问题,提出了一种基于类间方差和离散余弦变换融合的模板匹配增强哈希算法。该算法是一种运用类间方差阈值分割和离散余弦变换来提取目标不同特征信息,用快速增强差异法生成哈希序列来降低光照影响,用抽屉原理缩短汉明距离的比较时间的自动更新模板的目标跟踪算法。本文算法与传统哈希算法、基于DCT的压缩感知哈希算法在视频David,Girl和CarScale中进行了跟踪实验。实验结果表明,该算法在光照变化、目标形变和局部遮挡的情况下提高了目标的跟踪成功率,具备良好的鲁棒性,满足了实时跟踪的要求。Aiming at the problem that the compression perceptual Hash algorithm based on discrete cosine transform is difficult to track the target in the case of illumination change, target deformation or local occlusion, this paper proposes an enhanced template-matching Hash algorithm based on interclass variance and discrete cosine transform. This algorithm is a target tracking algorithm with automatic template updating, which uses the interclass variance threshold segmentation and discrete cosine transform to extract the different characteristic information of the target, the rapidly intensified method of difference to generate the Hashing sequence for reducing the influence of illumination, and the drawer principle to shorten the time for Hamming distance comparison. Experiments were made by using this algorithm, the traditional Hash algorithm, and the compression perceptual Hash algorithm based on DCT for tracking the three public standard videos of David, Girl, and CarScale. The results show that, the algorithm can improve the success rate of the target tracking under illumination change, target deformation or local occlusion, has good robustness and satisfies the real-time tracking requirements.

关 键 词:目标跟踪 类间方差 离散余弦变换 抽屉原理 鲁棒性 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象