检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李一鸣[1] 符世琛 周俊莹 宗凯[1] 李瑞[1] 吴淼[1] LI Yiming;FU Shichen;ZHOU Junying;ZONG Kai;LI Rui;WU Miao(School of Mechanical Electronic & Information Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China)
机构地区:[1]中国矿业大学(北京)机电与信息工程学院,北京100083
出 处:《煤炭学报》2018年第B06期331-337,共7页Journal of China Coal Society
基 金:国家重点基础研究发展计划(973)资助项目(2014CB046306)
摘 要:针对综放工作面垮落煤岩识别的技术问题,采集了放煤过程中垮落煤岩冲击液压支架后尾梁的振动信号,并提出了一种基于小波包能量流和LTSA的特征提取方法。该方法首先利用小波包变换把振动信号分解成一系列的时频子空间;为了观察原信号能量在各层时频子空间的分布特征,计算了小波包分解每一层各个时频子空间的能量,构成了一个小波包能量矩阵,称为小波包能量流;然后利用局部切空间排列(Local Tangent Space Alignment,LTSA)挖掘小波包能量流的低维流形。为了验证小波包能量流低维流形的有效性,把该特征向量输入BP神经网络来识别垮落煤岩。结果表明:基于小波包能量流和LTSA提取的特征向量可以准确简约地表征垮落煤岩,BP神经网络的识别率达到100%。In order to recognize the collapsing coal and rock,the vibration signals caused by the impact of collapsing coal-rock and hydraulic support tail beam are collected at the scene of a fully mechanized caving face.Then a new feature extraction method based on wavelet packet energy flow and LTSA is proposed,which is achieved by three main steps: firstly,the wavelet packet transform is conducted to decompose the vibration signals into a set of different timefrequency subspaces; then the wavelet packet energy flow is formed through time-frequency subspaces from low layer to high layer,the energy is calculated in each subspace of each layer; finally,low-dimensional manifold features carrying class information are extracted from the wavelet packet energy flow by using the LTSA algorithm.To verify the effectiveness of the low-dimensional manifold feature,it is used as the input of BP neural network to identify the collapsing coal and rock.The experimental results show that the proposed feature based on wavelet packet energy flow and LTSA is both accurate and concise,and the neural network identification rate reaches 100%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.230.40