检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学流体机械研究所,西安710049
出 处:《计算力学学报》2002年第3期281-285,共5页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金资助项目 ( 5 9776 0 0 6 )
摘 要:详细推导了谱元方法的具体计算公式和时间分裂法的具体计算过程 ;对一般的时间分裂法进行了改进 ,即对非线性步分别用 3阶 Adams-Bashforth方法和 4阶显式 Runge-Kutta法 ,粘性步采用 3阶隐式 Adams-Moulton形式 ,提高了时间方向的离散精度 ,同时还改进了压力边界条件 ,采用 3阶的压力边界条件 ;利用改进的时间分裂方法分解不可压缩 Navier-Stokes方程 ,并结合谱元法计算了移动顶盖方腔驱动流 ,提高了方法可以计算的 Re数 ,缩短了达到收敛的时间 ,并将结果与基准解进行比较 ;分析了移动顶盖方腔驱动流中 Re数对流场分布的影响。The calculational formula of the spectral element method that combines the generality of the finite element method with the accuracy of spectral techniques is induced in detail in this paper. The spectral element method is a high order weighted residual technique. In this method, firstly, the computational domain is broken into a series of elements, and the variable such as the velocity and the pressure is represented as a high order interpolation polynomial through Chebyshev collocation points, and then the element matrix is formed by finite element method. Lastly, the system matrix is constructed by element stiffness matrix summation, and the answer is obtained by solving the linear equation set. A formulation for splitting methods is also developed that results in high order time accurate schemes for the solution of incompressible Navier Stokes equations. The normal time splitting method is improved by applying third order explicit Adams Bashforth method and fourth order Runge Kutta method to the nonlinear connective terms, and third order implicit Adams Molten method to the linear terms. And the third order pressure boundary conditions for Possion equation for the pressure is employed as well. Using the high order time splitting method and high order pressure boundary conditions, the precision of the time discretization is advanced, and we can calculate the flow by longer time step to improve the efficiency of calculation. The advance of the precision for the time discretization is also useful for high Re fluid calculation. Then the high order time splitting method to split the incompressible Navier Stokes Equation, combining with the spectral element method, is utilized to simulate one typical sample in computational fluid dynamics, lid driven flow in closed square cavity. In the case of the same calculational accuracy and the same grid, the paper increase the Reynolds number from Re=100 that can be obtained using the normal time splitting method and the spectral element method to Re=600, and the ti
关 键 词:谱元法 高阶 时间分裂法 方腔顶盖 驱动流 NAVIER-STOKES方程 流场分布 计算流体力学 不可压缩粘性流体
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15