检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨恩浩[1]
机构地区:[1]暨南大学数学系
出 处:《暨南大学学报(自然科学与医学版)》1991年第1期1-8,共8页Journal of Jinan University(Natural Science & Medicine Edition)
摘 要:从考察被积函数的结构特点出发对一类多元Opial型积分不等式给出统一的推导,并对低维情形导出一系列重要的推论,其中包括对Opial、华罗庚及Pachpatte的有关已知不等式的新推广。In the present paper, we developed an unified method for the establishment of a class of Opial-type integral inequalities in n independent variables. Our main results are different from the only known n-variablc Opial-type integral inequality recently proved by B.G.Pachpatte.Many interesting corollaries for some lower-dimensional cases are also discussed. The corollaries for the one-dimensional case given herein generalise some known Opial inequalities obtained by Opial Z. Hua L K, and Pachpatte B G. An Opial integral inequality in two independent variables due to Pachpatte is also extended by our Corollary 4.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.139.45