检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张艳龙[1] 石建飞[1] 王丽[2] ZHANG Yan-long;SHI Jian-fei;WANG Li(School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;School of Mathematics, Lanzhou City University, Lanzhou 730070, China)
机构地区:[1]兰州交通大学机电工程学院,兰州730070 [2]兰州城市学院数学学院,兰州730070
出 处:《噪声与振动控制》2017年第5期33-37,45,共6页Noise and Vibration Control
基 金:国家自然科学基金资助项目(11302092)
摘 要:数值计算周期激励Ueda电路系统在双参数平面上的最大Lyapunov指数,得到系统在双参数平面上周期运动、拟周期运动和混沌运动的参数区域。结合单参数分岔图和庞加莱截面图讨论多参数耦合对系统运动稳定性的影响以及系统在参数平面上的分岔混沌过程,表明在不同的参数匹配下系统的局部动力学特性非常复杂,参数之间的相互耦合关系对系统分岔与混沌过程的影响非常明显:当外激励幅值小于1.0时,系统在外激励频率小于1.181或大于1.936的区域内均为拟周期运动;当外激励幅值大于1.0时,系统在外激励频率小于0.9和大于2.5的区域内出现混沌运动和周期运动相交替的现象;选取合适的参数,系统由拟周期运动经锁相退化为周期运动,后经倍周期分岔序列进入混沌运动;在给定系统参数下,当外激励频小于0.2时,系统振子发生颤振。The top Lyapunov exponent of the Ueda circuit system with periodic excitation on the double-parameter plane is calculated,and the parameter regions of periodic motion,quasi-periodic motion and chaotic motion of the system are obtained.With the single-parameter bifurcation diagrams and Poincarésection maps,the influence of multi-parameter coupling on the system motion stability is discussed,and the bifurcation and chaos processes of the system on the doubleparameter plane are also studied.The results show that the system local dynamic characteristics are very complex under different parameters coupling.The influence of the mutual coupling among the parameters on the process of bifurcation and chaos of the system is very obvious.When the external excitation amplitude is less than1.0,the system exhibits quasiperiodic motion in the region where the external excitation frequency is less than1.181or greater than1.936.When the external excitation amplitude is greater than1.0,the system exhibits periodic motion and chaotic motion alternatively in the range of the external excitation frequency below0.9or above2.5.When the system parameters are selected appropriately,the system motion will evolve into periodic motion from the quasi-periodic motion through phase lock,and then get into chaotic motion through multi-periodic bifurcation.Under the given system parameters,the system oscillator shows chatter motion when the external excitation frequency is less than0.2.
关 键 词:振动与波 Ueda电路 多参数匹配特性 LYAPUNOV指数 分岔
分 类 号:O322[理学—一般力学与力学基础] O241[理学—力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.252.132