关于齐次Carnot群上广义Morrey空间中一些性质(英文)  被引量:1

SOME PROPERTIES IN THE GENERALIZED MORREY SPACES ON HOMOGENOUS CARNOT GROUPS

在线阅读下载全文

作  者:龙品红[1] 韩惠丽[1] LONG Pinhong;HAN Huili(School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, China)

机构地区:[1]宁夏大学数学计算机学院,宁夏银川750021

出  处:《数学杂志》2018年第1期45-56,共12页Journal of Mathematics

基  金:Supported by Natural Science Foundations of China(11261041;11271045;11461053);Natural Science Foundations of Ningxia(NZ15055);Research Starting Funds for Imported Talents of Ningxia University

摘  要:本文研究了关于Heisenberg群上的广义Morrey空间和Carnot群上的Lebesgue空间中Riesz位势算子或者分数阶极大算子的行为.根据Heisenberg群中抽象调和分析方法以及sub Laplacian算子的Dirichlet问题解的表示公式,本文主要给出了关于齐次Carnot群G上消失的广义Morrey空间V L^(p,?)(G)中的加权Hardy算子、分数阶极大算子和分数阶位势算子的有界性刻画.进而也得到无消失模的广义Morrey空间上Morrey位势的浸入不等式.所有这些结果推广了关于Heisenberg群上的广义Morrey空间和Carnot群上的Lebesgue空间中的相关结论.In this paper,the behaviors for the Riesz potential or fractional maximal operator in the generalized Morrey spaces on the Heisenberg group and the Lebesgue spaces on the Carnot group are studied.According to the methods of abstract harmonic analysis in Heisenberg group and the representation formula of solution of Dirichlet problem for subLaplacian,we mainly give some characterizations for the boundedness of the weighted Hardy operator,fractional maximal operator and fractional potential operator in the vanishing generalized Morrey space V Lp;'(G)on homogenous Carnot group G.Moreover,we also obtain the embedding inequality for Morrey potentials in such these spaces without vanishing norm.All these results above generalize the related ones in the generalized Morrey spaces on the Heisenberg group and the Lebesgue spaces on the Carnot group.

关 键 词:CARNOT群 加权Hardy算子 分数阶极大算子 分数阶位势算子 广义MORREY空间 

分 类 号:O174.2[理学—数学] O177.5[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象