鲁棒高斯和集合卡尔曼滤波及其在纯角度跟踪中的应用  被引量:4

Robust Gaussian-sum ensemble Kalman filter and its application in bearings-only tracking

在线阅读下载全文

作  者:姜浩楠[1] 蔡远利[1] JIANG Hao-nan;CAI Yuan-li(School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an Shaanxi 710049, China)

机构地区:[1]西安交通大学电子与信息工程学院,陕西西安710049

出  处:《控制理论与应用》2018年第2期129-136,共8页Control Theory & Applications

基  金:国家自然科学基金项目(61202128);陕西省自然科学基础研究计划项目(2017JQ6056)资助~~

摘  要:针对纯角度目标跟踪中量测信息易受异常值和非高斯噪声干扰的问题,提出了一种新的非线性滤波算法–鲁棒高斯和集合卡尔曼滤波(robust Gaussian-sum ensemble Kalman filter,RGSEnKF)算法.首先,采用Huber技术重塑集合卡尔曼滤波的量测更新过程,能够有效地处理量测中的异常值.随后,将改进的集合卡尔曼滤波在高斯和框架下进行扩展,得到RGSEnKF算法,可以进一步解决受非高斯噪声干扰的非线性系统的状态估计问题.此外,新算法中包含距离参数化初始化策略和高斯分量融合策略.前者是为了减小纯角度跟踪中距离信息不可观测的影响,而后者可以避免高斯分量数目随时间不断增长.大量仿真结果验证了新算法的有效性和鲁棒性.In order to deal with the situation that measurements are easily contaminated by outliers and non-Gaussian noise,a new nonlinear filtering algorithm called the robust Gaussian-sum ensemble Kalman filter(RGSEnKF)is proposed for the bearings-only tracking problem.Firstly,the measurement update process of the ensemble Kalman filter is reformulated by using Huber technique so that outliers can be dealt with efficiently.Further,the improved ensemble Kalman filter is extended within a Gaussian-sum framework,the result is RGSEnKF algorithm which can handle the state estimation problem of nonlinear system corrupted by non-Gaussian noise.Moreover,the new algorithm includes a range-parameterized initialization strategy and a Gaussian merging strategy.The former strategy can reduce the effect of unobservability of range in bearings-only tracking and the latter can prevent the number of Gaussian components from increasing over time.Lots of simulation results validate the effectiveness and robustness of the new algorithm.

关 键 词:纯角度跟踪 异常值 非高斯噪声 集合卡尔曼滤波 高斯和 

分 类 号:V448[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象