基于信息熵和几何轮廓相似度的多变量决策树  被引量:1

Multivariate decision tree based on information entropy and outline similarity

在线阅读下载全文

作  者:张宇[1,2] 包研科[1] 邵良杉[2] Zhang Yu;Bao Yanke;Shao Liangshan(School of Science,Liaoning Technical University,Fuxin Liaoning 123000,China;System Engineering Institute,Liaoning Technical University,Fuxin Liaoning 123000,China)

机构地区:[1]辽宁工程技术大学理学院,辽宁阜新123000 [2]辽宁工程技术大学系统工程研究所,辽宁阜新123000

出  处:《计算机应用研究》2018年第4期1018-1022,共5页Application Research of Computers

基  金:国家自然科学基金资助项目(71371091)

摘  要:现有的多变量决策树在分类准确性与树结构复杂性两方面优于单变量决策树,但其训练时间却高于单变量决策树,使得现有的多变量决策树不适用于快速响应的分类任务。针对现有多变量决策树训练时间高的问题,提出了基于信息熵和几何轮廓相似度的多变量决策树(IEMDT)。该算法利用几何轮廓相似度函数的一对一映射特性,将n维空间样本点投影到一维空间的数轴上,进而形成有序的投影点集合;然后通过类别边界和信息增益计算最优分割点集,将有序投影点集合划分为多个子集;接着分别对每个子集继续投影分割,最终生成决策树。在八个数据集上的实验结果表明,IEMDT具有较低的训练时间,并且具有较高的分类准确性。The existing multivariate decision tree is better than the univariate decision tree in the aspect of classification accuracy and tree structure complexity,but its training time complexity is higher than the univariate decision tree,so the existing multivariate decision tree does not apply to classification tasks which have fast response.Due to the problem of high training time which the multivariable decision tree has,this paper proposed a new multivariate decision tree algorithm:a multivariate decision tree based on information entropy(IEMDT).IEMDT projected a n-dimension data point on a one-dimension line by using the specification of one to one mapping which geometric outline similarity function has,thus received an ordered projection points,then IEMDT searched the best splited point collection through class projection boundary and information entropy,which splited projection point collection into several subsets,and continued to project and split the corresponding sub datasets.Finally it generated the decision tree.The experimental results show that IEMDT has lower training time,but also has higher classification accuracy.

关 键 词:多变量决策树 分类 单变量决策树 几何轮廓相似度 信息增益 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象