检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张宁 赵睿 白郁 邹征夏[2] 朱新忠 史振威[2] ZHANG Ning;ZHAO Rui;BAI Yu;ZOU Zhengxia;ZHU Xinzhong;SHI Zhenwei(Shanghai Aeropace Electronic Technology Institute,Shanghai 201109,China;School of Astronautics,Beihang University,Beijing 100191,China)
机构地区:[1]上海航天电子技术研究所,上海201109 [2]北京航空航天大学宇航学院,北京100191
出 处:《上海航天》2018年第1期23-29,共7页Aerospace Shanghai
基 金:国家自然科学基金(61671037);上海航天科技创新基金(SAST2016090)
摘 要:提出了一种基于集成学习约束能量最小化(E-CEM)的高光谱图像目标检测算法。传统的高光谱检测算法通常是基于约束最小二乘法或基于高斯先验下的假设检验算法获得,然而真实环境中捕获的高光谱数据通常具有很强的非线性及非高斯特性,此时传统算法通常难以获得满意的检测效果。虽然核方法一定程度上能使传统算法获得较强的非线性表达能力,但核方法本身极易受到核函数参数的选择而表现出性能不稳定的现象。E-CEM在传统的约束能量最小化算法的基础上结合集成学习思想,使其在提升非线性光谱表达能力的同时提升检测的稳定性和稳健性。仿真高光谱图像和真实高光谱图像的实验结果都表明所提方法提升了CEM算法及其他经典算法的检测性能。This paper proposes a new method named ensemble-learning constrained energy minimization(E-CEM)for hyperspectral target detection.Traditional hyperspectral target detection methods are usually designed based on constrained least square regression method or hypothesis testing method with Gaussian distribution assumption.However,hyperspectral data captured in real environment often show strong non-linearity and non-Gaussianity.Under such condition,it is hard for those classical methods to obtain a satisfied performance.Although kernel trick is able to extend some traditional methods to their nonlinear form,the kernel based methods are extremely unstable due to the sensitivity of their parameter settings.The proposed E-CEM is designed with the idea of ensemble learning based on the CEM algorithm,which gives an improvement on both of its spectral representation ability and robustness.Experiments on synthetic hyperspectral image and real hyperspectral image demonstrate that the proposed method can enhance the detection performance of CEM algorithm and other classical detection algorithms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62