基于模糊神经网络PID的串级温度控制系统研究  被引量:8

Research on Cascade Temperature Control System Based on Fuzzy Neural Network PID

在线阅读下载全文

作  者:刘辉 吴云洁[1] 刘旺开[2] 时志国 Liu Hui;Wu Yunjie;Liu Wangkai;Shi Zhiguo(School of Automation Science&Electrical Engineering,Beihang University,Beijing 100191,China;School of Aeronautics Science&Engineering,Beihang University,Beijing 100191,China;Beijing Fuanshi Technology Co.,Ltd.,Beijing 100083,China)

机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100191 [2]北京航空航天大学航空科学与工程学院,北京100191 [3]北京富安时科技有限公司,北京100083

出  处:《兵工自动化》2018年第8期37-40,66,共5页Ordnance Industry Automation

摘  要:为解决传统PID控制存在控制效果不够理想、性能欠佳和很难满足系统精度要求的问题,提出基于模糊神经网络的自适应PID控制算法对系统进行控制。采用Labview构建模糊神经PID控制器,对环控引气系统温度进行动态控制,进行仿真研究,并将此控制策略与经典PID控制进行仿真比较。结果表明:基于模糊神经网络的PID控制算法在系统的超调量和调节时间上都小于经典PID,能提高系统的快速性和准确性,改善系统特性。In order to solve the problem that the control effect of the traditional PID control is not ideal,the performance is poor and it is difficult to meet the requirements of the accuracy of the system,an adaptive PID control algorithm based on fuzzy neural network is proposed to control the system.The fuzzy neural PID controller is constructed by using Labview to dynamically control the temperature of the loop controlled air entraining system.The simulation research is carried out,and the control strategy is compared with the classical PID control.The results show that the PID control algorithm based on fuzzy neural network is less than the classical PID in the overshoot and regulation time of the system,and can improve the rapidity and accuracy of the system,and improve the system characteristics.

关 键 词:环控引气系统 温度控制 PID控制 模糊理论 神经网络 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象