一类随机微分方程均方s渐进ω周期解的存在性(英文)  

EXISTENCE OF SQUARE-MEAN s-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS TO SOME STOCHASTIC DIFFERENTIAL EQUATIONS

在线阅读下载全文

作  者:刘敬怀 宋晓秋 张理涛 LIU Jing-huai;SONG Xiao-qiu;ZHANG Li-tao(College of Science,Zhengzhou University of Aeronautics,Zhengzhou 450046,China;Collaborative Innovation Center,Henan Province for Aviation Economy,Zhengzhou 450046,China;School of Mathematics,China University of Mining and Technology,Xuzhou 221116,China)

机构地区:[1]郑州航空工业管理学院理学院,河南郑州450046 [2]航空经济发展河南省协同创新中心,河南郑州450046 [3]中国矿业大学数学学院,江苏徐州221116

出  处:《数学杂志》2018年第5期782-792,共11页Journal of Mathematics

基  金:Supported by National Natural Science Foundation of China(51401182);the Tianyuan Special Funds of the National Natural Science Foundation of China(11226337);the Key Scientific Research Project of Higher Education of Henan Province(16A110024)

摘  要:本文研究了在可分的实Hilbert空间中一类随机微分方程均方s渐进ω周期温和解的存在性问题.利用均方s渐进ω周期随机过程理论及Banach不动点定理,获得了此类方程均方s渐进ω周期温和解的存在及唯一性结果.最后给出相关例子来验证理论结果.This paper is concerned with the existence of square-mean s-asymptotically w-periodic mild solutions to some stochastic di?erential equations in a real separable Hilbert space.By using the new theorem of square-mean s-asymptotically w-periodicity for stochastic process and Ba-nachˉxed point theorem,we obtain the existence and uniqueness of square-mean s-asymptotically w-periodic mild solutions to the equations.To illustrate the abstract result,a concrete example is given.

关 键 词:均方s渐进w周期 温和解 随机微分方程 HILBERT空间 

分 类 号:O211.63[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象