检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘敬怀 宋晓秋 张理涛 LIU Jing-huai;SONG Xiao-qiu;ZHANG Li-tao(College of Science,Zhengzhou University of Aeronautics,Zhengzhou 450046,China;Collaborative Innovation Center,Henan Province for Aviation Economy,Zhengzhou 450046,China;School of Mathematics,China University of Mining and Technology,Xuzhou 221116,China)
机构地区:[1]郑州航空工业管理学院理学院,河南郑州450046 [2]航空经济发展河南省协同创新中心,河南郑州450046 [3]中国矿业大学数学学院,江苏徐州221116
出 处:《数学杂志》2018年第5期782-792,共11页Journal of Mathematics
基 金:Supported by National Natural Science Foundation of China(51401182);the Tianyuan Special Funds of the National Natural Science Foundation of China(11226337);the Key Scientific Research Project of Higher Education of Henan Province(16A110024)
摘 要:本文研究了在可分的实Hilbert空间中一类随机微分方程均方s渐进ω周期温和解的存在性问题.利用均方s渐进ω周期随机过程理论及Banach不动点定理,获得了此类方程均方s渐进ω周期温和解的存在及唯一性结果.最后给出相关例子来验证理论结果.This paper is concerned with the existence of square-mean s-asymptotically w-periodic mild solutions to some stochastic di?erential equations in a real separable Hilbert space.By using the new theorem of square-mean s-asymptotically w-periodicity for stochastic process and Ba-nachˉxed point theorem,we obtain the existence and uniqueness of square-mean s-asymptotically w-periodic mild solutions to the equations.To illustrate the abstract result,a concrete example is given.
关 键 词:均方s渐进w周期 温和解 随机微分方程 HILBERT空间
分 类 号:O211.63[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3