Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep  被引量:5

Functional roles of ornithine decarboxylase and arginine decarboxylase during the peri-implantation period of pregnancy in sheep

在线阅读下载全文

作  者:Yasser Y.Lenis Gregory A.Johnson Xiaoqiu Wang Wendy W.Tang Kathrin A.Dunlap M.Carey Satterfield Guoyao Wu Thomas R.Hansen Fuller W.Bazer 

机构地区:[1]Department of Animal Science,Texas A&M University,College Station,TX 77843-2471,USA [2]Center for Animal Biotechnology and Genomics,Texas A&M University,College Station,TX 77843,USA [3]Centauro Research Group,School of Veterinary Medicine,Faculty of Agrarian Science,Universidad de Antioquia,Calle 70 No,52-21 Medellín,Colombia [4]Faculty of Agricultural Sciences,Calle 222 No.55-37,UDCA,Bogota,Colombia [5]Present address:National Institute of Environmental Health Sciences,Research Triangle Park,NC 27709,USA [6]Animal Reproduction and Biotechnology Laboratory,Department of Biomedical Sciences,College of Veterinary Medicine and Biomedical Sciences,Colorado State University,Fort Collins,CO 80523,USA

出  处:《Journal of Animal Science and Biotechnology》2018年第2期306-318,共13页畜牧与生物技术杂志(英文版)

基  金:supported primarily by the Agriculture and Food Research Initiative Competitive Grants(2016-67,015-24,958 to Fuller W.Bazer and 2015-67,015-23,276 to Guoyao Wu)from the United States Department of Agriculture,National Institute of Food and Agriculture;supported by funding from the Sustainability Strategy2013–2014,from CODI University of Antioquia(Ude A),Medellín,Colombia Scholarship“Becas Doctorado Ude A 2014.”

摘  要:Background: Polyamines stimulate DNA transcription and m RNA translation for protein synthesis in trophectoderm cells, as well as proliferation and migration of cells; therefore, they are essential for development and survival of conceptuses(embryo/fetus and placenta). The ovine conceptus produces polyamines via classical and non-classical pathways. In the classical pathway, arginine(Arg) is transformed into ornithine, which is then decarboxylated by ornithine decarboxylase(ODC1) to produce putrescine which is the substrate for the production of spermidine and spermine. In the non-classical pathway, Arg is converted to agmatine(Agm) by arginine decarboxylase(ADC), and Agm is converted to putrescine by agmatinase(AGMAT).Methods: Morpholino antisense oligonucleotides(MAOs) were designed and synthesized to inhibit translational initiation of the m RNAs for ODC1 and ADC, in ovine conceptuses.Results: The morphologies of MAO control, MAO-ODC1, and MAO-ADC conceptuses were normal. Double knockdown of ODC1 and ADC(MAO-ODC1:ADC) resulted in two phenotypes of conceptuses; 33% of conceptuses appeared to be morphological y and functional y normal(phenotype a) and 67% of the conceptuses presented an abnormal morphology and functionality(phenotype b). Furthermore, MAO-ODC1:ADC(a) conceptuses had greater tissue concentrations of Agm,putrescine, and spermidine than MAO control conceptuses, while MAO-ODC1:ADC(b) conceptuses only had greater tissue concentrations of Agm. Uterine flushes from ewes with MAO-ODC1:ADC(a) had greater amounts of arginine, aspartate, tyrosine, citrulline, lysine, phenylalanine, isoleucine, leucine, and glutamine, while uterine flushes of ewes with MAO-ODC1:ADC(b) conceptuses had lower amount of putrescine, spermidine, spermine, alanine, aspartate,glutamine, tyrosine, phenylalanine, isoleucine, leucine, and lysine.Conclusions: The double-knockdown of translation of ODC1 and ADC m RNAs was most detrimental to conceptus development and their production of interferon tau(IFNT). Agm, polyamines, amino acids,Background: Polyamines stimulate DNA transcription and m RNA translation for protein synthesis in trophectoderm cells, as well as proliferation and migration of cells; therefore, they are essential for development and survival of conceptuses(embryo/fetus and placenta). The ovine conceptus produces polyamines via classical and non-classical pathways. In the classical pathway, arginine(Arg) is transformed into ornithine, which is then decarboxylated by ornithine decarboxylase(ODC1) to produce putrescine which is the substrate for the production of spermidine and spermine. In the non-classical pathway, Arg is converted to agmatine(Agm) by arginine decarboxylase(ADC), and Agm is converted to putrescine by agmatinase(AGMAT).Methods: Morpholino antisense oligonucleotides(MAOs) were designed and synthesized to inhibit translational initiation of the m RNAs for ODC1 and ADC, in ovine conceptuses.Results: The morphologies of MAO control, MAO-ODC1, and MAO-ADC conceptuses were normal. Double knockdown of ODC1 and ADC(MAO-ODC1:ADC) resulted in two phenotypes of conceptuses; 33% of conceptuses appeared to be morphological y and functional y normal(phenotype a) and 67% of the conceptuses presented an abnormal morphology and functionality(phenotype b). Furthermore, MAO-ODC1:ADC(a) conceptuses had greater tissue concentrations of Agm,putrescine, and spermidine than MAO control conceptuses, while MAO-ODC1:ADC(b) conceptuses only had greater tissue concentrations of Agm. Uterine flushes from ewes with MAO-ODC1:ADC(a) had greater amounts of arginine, aspartate, tyrosine, citrulline, lysine, phenylalanine, isoleucine, leucine, and glutamine, while uterine flushes of ewes with MAO-ODC1:ADC(b) conceptuses had lower amount of putrescine, spermidine, spermine, alanine, aspartate,glutamine, tyrosine, phenylalanine, isoleucine, leucine, and lysine.Conclusions: The double-knockdown of translation of ODC1 and ADC m RNAs was most detrimental to conceptus development and their production of interferon tau(IFNT). Agm, polyamines, amino acids,

关 键 词:AGMATINE ARGININE INTERFERON tau Polyamines TROPHECTODERM cells 

分 类 号:S[农业科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象