机构地区:[1]State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,The First Affiliated Hospital,School of Medicine,Zhejiang University,Hangzhou 310003,Zhejiang Province,China [2]Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases,Hangzhou 310003,Zhejiang Province,China [3]Department of Chemotherapy 2,Wenzhou Central Hospital,Wenzhou 325000,Zhejiang Province,China [4]Department of Clinical Laboratory,Tai’an Central Hospital,Tai’an 271000,Shandong Province,China
出 处:《World Journal of Gastroenterology》2018年第23期2468-2481,共14页世界胃肠病学杂志(英文版)
基 金:the National Natural Science Foundation of China,No.81330011,No.81790631,and No.81790633;the Science Fund for Creative Research Groups of the National Natural Science Foundation of China,No.81721091;the National Basic Research Program of China(973 program),No.2013CB531401
摘 要:AIM To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis(NASH) development in mice fed a methionine-choline-deficient(MCD) diet. METHODS Twenty-four male C57 BL/6 J mice were equally divided into four groups and fed a methionine-choline-sufficient diet for 2 wk(Control 2 w group,n = 6) or 4 wk(Control 4 w group,n = 6) or the MCD diet for 2 wk(MCD 2 w group,n = 6) or 4 wk(MCD 4 w group,n = 6). Liver injury,fibrosis,and intestinal barrier function were evaluated after 2 and 4 wk of feeding. The fecal microbiome and metabolome were studied using 16 s r RNA deep sequencing and gas chromatography-mass spectrometry. RESULTS The mice fed the MCD diet presented with simple hepatic steatosis and slight intestinal barrier deterioration after 2 wk. After 4 wk of feeding with the MCD diet,however,the mice developed prominent NASH with liver fibrosis,and the intestinal barrier was more impaired. Compared with the control diet,the MCD diet induced gradual gut microbiota dysbiosis,as evidenced by a marked decrease in the abundance of Alistipes and the(Eubacterium) coprostanoligenes group(P < 0.001 and P < 0.05,respectively) and a significant increase in Ruminococcaceae UCG 014 abundance(P < 0.05) after 2 wk. At 4 wk,the MCD diet significantly reduced the promising probiotic Bifidobacterium levels and markedly promoted Bacteroides abundance(P < 0.05,and P < 0.01,respectively). The fecal metabolomic profile was also substantially altered by the MCD diet: At 2 wk,arachidic acid,hexadecane,palmitic acid,and tetracosane were selected as potential biomarkers that were significantly different in the corresponding control group,and at 4 wk,cholic acid,cholesterol,arachidic acid,tetracosane,and stearic acid were selected. CONCLUSION The MCD diet induced persistent alterations in the gut microbiota and metabolome.AIM To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis(NASH) development in mice fed a methionine-choline-deficient(MCD) diet. METHODS Twenty-four male C57 BL/6 J mice were equally divided into four groups and fed a methionine-choline-sufficient diet for 2 wk(Control 2 w group,n = 6) or 4 wk(Control 4 w group,n = 6) or the MCD diet for 2 wk(MCD 2 w group,n = 6) or 4 wk(MCD 4 w group,n = 6). Liver injury,fibrosis,and intestinal barrier function were evaluated after 2 and 4 wk of feeding. The fecal microbiome and metabolome were studied using 16 s r RNA deep sequencing and gas chromatography-mass spectrometry. RESULTS The mice fed the MCD diet presented with simple hepatic steatosis and slight intestinal barrier deterioration after 2 wk. After 4 wk of feeding with the MCD diet,however,the mice developed prominent NASH with liver fibrosis,and the intestinal barrier was more impaired. Compared with the control diet,the MCD diet induced gradual gut microbiota dysbiosis,as evidenced by a marked decrease in the abundance of Alistipes and the(Eubacterium) coprostanoligenes group(P < 0.001 and P < 0.05,respectively) and a significant increase in Ruminococcaceae UCG 014 abundance(P < 0.05) after 2 wk. At 4 wk,the MCD diet significantly reduced the promising probiotic Bifidobacterium levels and markedly promoted Bacteroides abundance(P < 0.05,and P < 0.01,respectively). The fecal metabolomic profile was also substantially altered by the MCD diet: At 2 wk,arachidic acid,hexadecane,palmitic acid,and tetracosane were selected as potential biomarkers that were significantly different in the corresponding control group,and at 4 wk,cholic acid,cholesterol,arachidic acid,tetracosane,and stearic acid were selected. CONCLUSION The MCD diet induced persistent alterations in the gut microbiota and metabolome.
关 键 词:NONALCOHOLIC STEATOHEPATITIS Methioninecholine DEFICIENT DIET Gut microbiota METABOLOME NONALCOHOLIC fatty liver disease
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...