检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡松 吴仲城[1] 张俊 Hu Song;Wu Zhongcheng;Zhang Jun(High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,Anhui,China;University of Science and Technology of China,Hefei 230026,Anhui,China)
机构地区:[1]中国科学院合肥物质科学研究院强磁场科学中心,安徽合肥230031 [2]中国科学技术大学,安徽合肥230026
出 处:《计算机应用与软件》2019年第1期59-66,87,共9页Computer Applications and Software
基 金:国家自然科学基金项目(61273323)
摘 要:针对驾驶行为识别问题,利用智能手机传感器采集相应车辆的加速度、角速度信息,并用手机角度信息对原始数据进行矫正处理。传统的驾驶行为识别方法须事先对原始数据单元人为进行特征提取。为改善繁琐的人工特征提取方法,提出一种驾驶行为识别领域基于改进的卷积神经网络的特征提取方法。原始数据经过组合后,作为卷积神经网络的输入。通过改变卷积神经网络的损失函数,提高类内样本特征的相似度,再将提取的特征作为核极限学习机的输入。实验结果表明,该方法可有效识别车辆的静止、急加速、急减速、正常行驶、左转弯、右转弯等驾驶行为。Aiming at the problem of driving behavior recognition,this paper used smart phone sensor to collect acceleration and angular velocity information of the vehicle,and used mobile phone angle information to correct the original data.The traditional driving behavior recognition method must extract features from original data unit artificially in advance.To improve the tedious manual feature extraction method,we proposed a feature extraction method based on the improved convolution neural network in the field of driving behavior recognition.After the original data was combined,it was used as the input of convolution neural network.By changing the loss function of the convolution neural network,the similarity of the sample features in the class was improved,and the extracted features were used as the input of the kernel extreme learning machine.The experimental results show that the method can effectively identify the driving behavior of vehicles such as static,rapid acceleration,rapid deceleration,normal driving,left-turn,right-turn,etc.
关 键 词:特征提取 卷积神经网络 手机传感器 核极限学习机
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3