二维Logistic分数阶微分方程的离散化过程  被引量:2

Discretization process of coupled Logistic fractional-order differential equation

在线阅读下载全文

作  者:刘杉杉 高飞[1] 李文琴 LIU Shanshan;GAO Fei;LI Wenqin(School of Science,Wuhan University of Technology,Wuhan Hubei 430070,China)

机构地区:[1]武汉理工大学理学院,武汉430070

出  处:《计算机应用》2019年第1期305-310,共6页journal of Computer Applications

基  金:中央高校基本科研业务费专项资金资助项目(181114011;185214003;2018-zy-137);国家自然科学基金重大研究计划项目(91324201);湖北省自然科学基金资助项目(2014CFB865)~~

摘  要:针对二维Logistic分数阶微分方程的求解问题,引进了一种离散化方法对其进行离散求解。首先,将二维Logistic整数阶微分方程推广到分数阶微积分领域;其次,分析相应具有分段常数变元的二维Logistic分数阶微分方程并应用提出的离散化方法对模型进行数值求解;然后,根据不动点理论讨论该合成动力系统不动点的稳定性,给出了在参数空间内二维Logistic分数阶系统发生第一次分岔的边界方程;最后,借助Matlab对模型进行数值仿真,并结合Lyapunov指数、相图、时间序列图、分岔图探讨模型更多复杂的动力学现象。仿真结果显示,所提方法成功对二维Logistic分数阶微分方程进行离散。Focusing on the problem of solving coupled Logistic fractional-order differential equation,a discretization method was introduced to solve it discretly.Firstly,a coupled Logistic integer-order differential equation was introduced into the fields of fractional-order calculus.Secondly,the corresponding coupled Logistic fractional-order differential equation with piecewise constant arguments was analyzed and the proposed discretization method was applied to solve the model numerically.Then,according to the fixed point theory,the stability of the fixed point of the synthetic dynamic system was discussed,and the boundary equation of the first bifurcation of the coupled Logistic fractional-order system in the parameter space was given.Finally,the model was numerically simulated by Matlab,and more complex dynamics phenomena of model were discussed with Lyapunov index,phase diagram,time series diagram and bifurcation diagram.The simulation results show that,the proposed method is successful in discretizing coupled Logistic fractional-order differential equation.

关 键 词:二维Logistic微分方程 时滞 分段常数变元 不动点 分岔 混沌 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术] TP301.5[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象