基于ELM的局部空间信息的模糊C均值聚类图像分割算法  被引量:6

Fuzzy C-Means Clustering Image Segmentation Algorithm with Local Spatial Information Based on ELM

在线阅读下载全文

作  者:陈凯 陈秀宏[1] Chen Kai;Chen Xiuhong(School of Digital Mediea,Jiangnan University,Wuxi,214122,China)

机构地区:[1]江南大学数字媒体学院,无锡214122

出  处:《数据采集与处理》2019年第1期100-110,共11页Journal of Data Acquisition and Processing

基  金:国家自然科学基金(61373055)资助项目

摘  要:极限学习机(Extreme learning machine,ELM)作为一种新技术具有在回归和分类中良好的泛化性能。局部空间信息的模糊C均值算法(Weighted fuzzy local information C-means,WFLICM)用邻域像素点的空间信息标记中心点的影响因子,增强了模糊C均值聚类算法的去噪声能力。基于极限学习机理论,对WFLICM进行改进优化,提出了基于ELM的局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means based on ELM,ELM-NKWFLICM)。该方法基于ELM特征映射技术,将原始数据通过ELM特征映射技术映射到高维ELM隐空间中,再用改进的新核局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information Cmeans,NKWFLICM)进行聚类。实验结果表明ELM-NKWFLICM算法具有比WFLICM算法更强的去噪声能力,且很好地保留了原图像的细节,算法在处理复杂非线性数据时更高效,同时克服了模糊聚类算法对模糊指数的敏感性问题。As a new technology,extreme learning machine(ELM)has good generalization performance in regression and classification.Weighted fuzzy local information C-means(WFLICM)uses point coordinate distance and the local pixel coefficient of variation to mark the impact factor of each point to the middle point,improving the robustness of fuzzy C-means cluster algorithm.Based on ELM and improving WFLICM,new kernel weighted fuzzy local information C-means based on ELM(ELM-NKWFLICM)is proposed.The method is based on ELM feature mapping technique,mapping the original data to the highdimensional ELM hidden space through the ELM feature mapping technique,and then is clustered by the new kernel weighted fuzzy local information c-means(NKWFLICM)of the improved new kernel local spatial information.Experimental results show that the proposed algorithm has better robustness than the WFLICM algorithm and retains the original image details well.The algorithm is more efficient in dealing with complex nonlinear data,and overcomes the sensitivity of fuzzy clustering algorithm to fuzzy exponents.

关 键 词:聚类算法 图像分割 模糊C均值算法 极限学习机 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象