检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李海银 Haiyin Li(Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450046)
机构地区:[1]河南财经政法大学数学与信息科学学院,郑州450046
出 处:《数学物理学报(A辑)》2019年第2期358-371,共14页Acta Mathematica Scientia
基 金:国家自然科学基金(61640315);河南省高等学校重点科研项目资助计划(18A110012)~~
摘 要:捕食者和被捕食者都具有密度制约的捕食-被捕食模型更符合实际的生物环境,也更有一定的现实意义,所以该文考虑了密度制约且具有Beddington-DeAngelis功能反应函数的时滞捕食-被捕食系统.首先,给出系统的稳定性变换为后面讨论分支周期解做好准备.其次,由中心流形定理和规范型理论,得到Hopf分支关于分支方向、稳定性以及周期情况的特性指标.最后,在数值模拟这部分对系统稳定性变换和系统的Hopf分支进行了验证.In this paper, we investigate stability and Hopf bifurcation of a delayed density-dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered such that the studied predator-prey system conforms to the realistically biological environment. Firstly, stability transformation of the system was given to prepare for discussion of bifurcating periodic solution. Secondly, we discussed properties of Hopf bifurcation about bifurcating direction, stability and period by center manifold theorem and normal form theory. Finally, an example with numerical simulations is given to illustrate stability transformation and Hopf bifurcation of the system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.226.67