Engineering the Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae with Heterologous Enzyme Combinations  被引量:11

利用异源酶组合构建酿酒酵母中咖啡酸的生物合成

在线阅读下载全文

作  者:Lanqing Liu Hong Liu Wei Zhang Mingdong Yao Bingzhi Li Duo Liu Yingjin Yuan 

机构地区:[1]Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China [2]SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China

出  处:《Engineering》2019年第2期287-295,共9页工程(英文)

基  金:the Ministry of Science and Technology of China (2014CB745100);the National Natural Science Foundation of China (21390203 and 21706186).

摘  要:Engineering the biosynthesis of plant-derived natural products in microbes presents several challenges, especially when the expression and activation of the plant cytochrome P450 enzyme is required. By recruiting two enzymes—HpaB and HpaC—from several bacteria, we constructed functional 4- hydroxyphenylacetate 3-hydroxylase (4HPA3H) in Saccharomyces cerevisiae to take on a role similar to that of the plant-derived cytochrome P450 enzyme and produce caffeic acid. Along with a common tyrosine ammonia lyase (TAL), the different combinations of HpaB and HpaC presented varied capabilities in producing the target product, caffeic acid, from the substrate, L-tyrosine. The highest production of caffeic acid was obtained with the enzyme combination of HpaB from Pseudomonas aeruginosa and HpaC from Salmonella enterica, which yielded up to (289.4 ± 4.6) mg-L1 in shake-flask cultivation. The compatibility of heterologous enzymes within a yeast chassis was effectively improved, as the caffeic acid production was increased by 40 times from the initial yield. Six key amino acid residues around the flavin adenine dinucleotide (FAD) binding domain in HpaB from Pseudomonas aeruginosa were differentiate from those other HpaBs, and might play critical roles in affecting enzyme activity. We have thus established an effective approach to construct a highly efficient yeast system to synthesize non-native hydroxylated phenylpropanoids.Engineering the biosynthesis of plant-derived natural products in microbes presents several challenges,especially when the expression and activation of the plant cytochrome P450 enzyme is required. By recruiting two enzymes—HpaB and HpaC—from several bacteria, we constructed functional 4-hydroxyphenylacetate 3-hydroxylase(4 HPA3 H) in Saccharomyces cerevisiae to take on a role similar to that of the plant-derived cytochrome P450 enzyme and produce caffeic acid. Along with a common tyrosine ammonia lyase(TAL), the different combinations of HpaB and HpaC presented varied capabilities in producing the target product, caffeic acid, from the substrate, L-tyrosine. The highest production of caffeic acid was obtained with the enzyme combination of HpaB from Pseudomonas aeruginosa and HpaC from Salmonella enterica, which yielded up to(289.4 ± 4.6) mgáLà1 in shake-flask cultivation. The compatibility of heterologous enzymes within a yeast chassis was effectively improved, as the caffeic acid production was increased by 40 times from the initial yield. Six key amino acid residues around the flavin adenine dinucleotide(FAD) binding domain in HpaB from Pseudomonas aeruginosa were differentiate from those other HpaBs, and might play critical roles in affecting enzyme activity. We have thus established an effective approach to construct a highly efficient yeast system to synthesize non-native hydroxylated phenylpropanoids.

关 键 词:SACCHAROMYCES CEREVISIAE Caffeic acid HETEROLOGOUS enzyme CYTOCHROME P450 Synthetic biology 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象