基于神经网络的电子节气门系统模型参考自适应控制  被引量:2

Neural Network-based Model Reference Adaptive Control for Electronic Throttle System

在线阅读下载全文

作  者:寇汶淇 雷菊阳[1] KOU Wen-qi;LEI Ju-yang(College of Mechanical and Automotive Engineering,Shanghai University of Engineering Science)

机构地区:[1]上海工程技术大学机械与汽车工程学院

出  处:《化工自动化及仪表》2019年第4期256-261,共6页Control and Instruments in Chemical Industry

摘  要:使用多层感知器神经网络模型来识别和控制非线性电子节气门系统。首先,神经网络模型在不同运行条件下辨识,它代表非线性节气门伺服系统的动态特性。其次,使用油门辨识器网络模型来设计和训练神经网络控制器模型,从而使节气门系统的追踪控制位置遵循参考模型。油门辨识器网络模型用于辅助以离线模式训练的神经网络控制器。神经网络控制器使用相同的输入来进行训练,这些输入被反馈到实际的节气门系统以产生相同的输出。通过调整神经网络控制器的权重和偏差参数,使用自适应算法来减小输出之间的差异。对使用神经网络控制器的节气门控制系统的跟踪控制性能与使用经典自适应PID控制器进行比较。仿真结果表明:采用神经网络控制器可实现跟踪控制,满足控制性能的所有需求。Having multi-layer perception model of the neural network adopted to identify and control a non-linear electronic throttle system was implemented.Firstly,the neural network model which represents dynamic behavior of the non-linear throttle servo system can identify the non-linear electronic throttle system at different operating conditions;and secondly,the throttle identifier network model can be used to design and train the neural network controller model so that the tracking control position of the throttle system follows a reference model.Having the throttle identifier network model used to assist the neural controller trained in off-line mode was implemented and the neural network controller trained with the same inputs which are fedback to the actual throttle system to produce the same output.Through adjusting the weights and deviation parameters of the controller network model,an adaptation algorithm was used to reduce the difference between the outputs.Comparing the tracking control performance of the throttle control system which using the neural network controller with the classical adaptive PID controller shows that,making use of the neural network controller can realize the tracking control and satisfy all requirements for the control performance.

关 键 词:神经网络 电子节气门控制系统 模型参考自适应控制 Matlab/Mathworks仿真 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象