非Fourier温度场分布的奇摄动解  被引量:4

Singularly Perturbed Solutions of Non-Fourier Temperature Field Distribution in Single-Layer Materials

在线阅读下载全文

作  者:包立平[1] 李文彦 吴立群[2] BAO Liping;LI Wenyan;WU Liqun(School of Sciences, Hangzhou Dianzi University,Hangzhou 310018, P.R.China;School of Mechanical Engineering, Hangzhou Dianzi University,Hangzhou 310018, P.R.China)

机构地区:[1]杭州电子科技大学理学院,杭州310018 [2]杭州电子科技大学机械工程学院,杭州310018

出  处:《应用数学和力学》2019年第5期536-545,共10页Applied Mathematics and Mechanics

基  金:国家自然科学基金(51175134);浙江省重点自然科学基金(LZ15E050004)~~

摘  要:应用非Fourier热传导定律构建了单层材料中温度场模型,即一类在无界域上带小参数的奇摄动双曲方程,通过奇摄动展开方法,得到了该问题的渐近解.首先应用奇摄动方法得到了该问题的外解和边界层矫正项,通过对内解和外解的最大模估计和关于时间导数的最大模估计以及线性抛物方程理论,得到了内外解的存在唯一性,从而得到了解的形式渐近展开式.通过余项估计,给出了渐近解的L^2估计,得到了渐近解的一致有效性,从而得到了无界域上温度场的分布.通过奇摄动分析,给出了非Fourier温度场与Fourier温度场的关系,描述了非Fourier温度场的具体形态.A temperature field model for single-layer materials was constructed with the non-Fourier heat conduction law, i.e. a type of singularly perturbed hyperbolic equations with small parameters in an unbounded domain. The asymptotic solution to the problem was obtained with the singularly perturbed expansion method. Firstly, the singular perturbation method was used to obtain the external solution and boundary layer correction terms of the problem. Through estimation of the maximum norms of the internal solution and the external solution, and the maximum norms of the time derivative, and under the theory of linear parabolic equations, the existence and uniqueness of the internal and external solutions were obtained, and the formal asymptotic expansion of the solution was obtained. The L 2 estimator of the asymptotic solution was given with the remainder estimator. The uniform validity of the asymptotic solution and the distribution of the temperature field in the unbounded domain were got. Through singular perturbation analysis, the relationship between the non-Fourier temperature field and the Fourier temperature field was given, and the specific behaviors of the non-Fourier temperature field were described.

关 键 词:奇摄动 热传导方程 无界域 一致有效估计 

分 类 号:TK12[动力工程及工程热物理—工程热物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象