基于M估计的鲁棒后向平滑CKF单站跟踪算法  被引量:3

Single-Observer Tracking Algorithm Based on M-Estimation Robust Backward-Smoothing CKF

在线阅读下载全文

作  者:任臻 李积英[1] 吴昊[2] REN Zhen;LI Jiying;WU Hao(College of Electronic & Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China)

机构地区:[1]兰州交通大学电子与信息工程学院,兰州730070 [2]空军工程大学信息与导航学院,西安710077

出  处:《计算机工程与应用》2019年第11期74-79,166,共7页Computer Engineering and Applications

基  金:国家自然科学基金(No.61703420)

摘  要:提出一种基于M估计的鲁棒后向平滑容积卡尔曼滤波(M-estimated based Robust Backward-Smoothing Cubature Kalman Filter,MR-BSCKF)算法。该算法将改进的M估计思想引入后向平滑容积卡尔曼滤波(BSCKF)算法中,引入Mahalanobis距离构建P-Huber等价权函数,通过降低野值误判概率进一步提高滤波算法的鲁棒性;在传统CKF算法的基础上增加后向平滑函数,通过后向平滑和前向滤波相结合的二次滤波进一步提高滤波的精度,实现了算法精度和抗野值能力的统一。仿真结果表明,与传统算法相比,MR-BSCKF在有野值和无野值的情况下都能够得到更加准确的目标跟踪结果,且鲁棒性更强。M-estimated based Robust Backward-Smoothing Cubature Kalman Filter(MR-BSCKF)algorithm is proposed.The algorithm introduces the improved M-estimation idea into the Backward-Smoothing Cubature Kalman Filter(BSCKF)algorithm, introduces the Mahalanobis distance to construct the P-Huber equivalent weight function, and the robustness of the filtering algorithm is further increased by reducing outliers misjudgment. The algorithm introduces the backward-smoothing function into the traditional CKF algorithm, and the filtering accuracy is further improved by the secondary filtering combined with backward smoothing and forward filtering, that achieving filtering accuracy and robustness at the same time. The simulation results show that MR-BSCKF, compared with the traditional algorithm, can get more accurate target tracking results in the presence and absence of outliers, and the robustness is more robust.

关 键 词:单站目标跟踪 非线性滤波 容积卡尔曼滤波 后向平滑 野值 M估计 

分 类 号:TN971[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象