检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹珊珊 胡志兴[1] 廖福成[1] YIN Shanshan;HU Zhixing;LIAO Fucheng(School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China)
机构地区:[1]北京科技大学数理学院
出 处:《黑龙江大学自然科学学报》2019年第3期284-296,共13页Journal of Natural Science of Heilongjiang University
基 金:国家自然科学基金资助项目(61174209)
摘 要:建立具有饱和发生率和两时滞的基孔肯雅病毒模型,两个时滞分别为病毒及B细胞的产生所需的时间延迟。讨论平衡点的存在性与唯一性,以及无病平衡点E0和感染平衡点E1的存在条件,通过特征方程分析两个平衡点的局部渐近性。研究两个时滞分别在不同情形下对感染平衡点E1稳定性的影响,分析系统在E1处Hopf分支的存在性。对结论进行了数值模拟。In this paper, a chikungunya virus infection model was established with saturated infection rates and two time delays, which was for the virus and B cells to produce the required time delay. It started for discussing the existence and uniqueness of equilibrium and the existence conditions of the disease-free equilibrium E0 and the endemic equilibrium E1. Through the analysis of the characteristic equation, the locally asymptotical stability of two equilibriums was considered. Furthermore, the effect on the stability of the infection equilibrium E1 by two delays in different conditions was studied, respectively. And the existence of Hopf bifurcations in the system was analyzed. The conclusion of this article was carried on the numerical simulation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43