检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张海波[1] ZHANG Hai-bo(Shaanxi Xueqian Normal University,Xi’an 710100,China)
机构地区:[1]陕西学前师范学院
出 处:《信息技术》2019年第6期82-86,90,共6页Information Technology
摘 要:为了提高目标物体的跟踪鲁棒性和稳定性,文中将L2正则化最小二乘法和卷积神经网络(CNN)相互结合,提出了一种基于正则化卷积神经网络的目标跟踪算法。通过L2跟踪器来评估目标无题被遮挡的程度,利用两层CNN对目标进行目标表示,去除了大部分无关样本,降低了算法的复杂度。实验结果表明,当目标物体发生姿态变化或旋转等剧烈的外观变化时,所提算法具有较强的鲁棒性和稳定性,并且比其他经典的跟踪算法具有更高的精度。In order to improve the tracking robustness and stability of the target object,a target tracking algorithm based on regularized convolution neural network( CNN) was proposed in this paper,which combines L2 regularized least squares method with convolution neural network( CNN). L2 tracker was used to evaluate the degree of occlusion of the target. Two-layer CNN was used to represent the target robustly. Most of the irrelevant samples were removed and the complexity of the algorithm was reduced.The experimental results show that the proposed algorithm has strong robustness and stability,and has higher accuracy than other classical tracking algorithms when the object changes its formation dramatically.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145