检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李鹏越 田建东[2,3] 王国霖 李小毛[5] 唐延东[2,3] 吴成东 LI Pengyue;TIAN Jiandong;WANG Guolin;LI Xiaomao;TANG Yandong;WU Chengdong(Faculty of Robot Science and Engineering,Northeastern University,Shenyang 110819;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110016;University of Chinese Academy of Sciences,Beijing 100049;School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444)
机构地区:[1]东北大学机器人科学与工程学院,沈阳110819 [2]中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳110016 [3]中国科学院机器人与智能制造创新研究院,沈阳110016 [4]中国科学院大学,北京100049 [5]上海大学机电工程与自动化学院,上海200444
出 处:《机械工程学报》2019年第11期98-104,共7页Journal of Mechanical Engineering
基 金:国家自然科学基金资助项目(91648118,61473280,61821005)
摘 要:针对雪天气影响共融机器人视觉系统鲁棒性的问题,提出了一种基于雪模型和深度学习融合的去雪算法。根据雪的成像过程推导了一个简化的雪模型,设计了一个基于该模型的深度去雪网络,该网络由雪花检测子网络和去除子网络串联组成。雪花检测子网络采用了残差学习网络,该网络可以准确地学习雪图像和无雪图像之间的差异。去雪子网络采用了密集连接的U型网络。它一方面利用U型网络保留背景的细节信息,另一方面利用DenseNet将低层特征复用到高层的特点来提高去雪的准确度,将它们结合后缓解了去雪过度导致背景细节丢失和去雪不彻底之间的矛盾。试验证明这种基于雪模型的深度去雪网络能够较好地检测和去除图像中的雪花。Aiming at the problem that snow weather affects the robustness of the fusion robotic vision system,a snow removal method based on snow model and deep learning is proposed.A simplified snow model is derived based on the snow imaging process,and a deep snow removal network is designed based on this model.The network consists of a snowflakes detection sub-network and a snowflakes removal sub-network.The snowflakes detection sub-network uses a residual learning network to accurately learn the difference between snow images and snow-free images.The desnowing sub-network adopts a densely connected U network.It usually can relieve the contradiction of over-desnowing and under-desnowing by using U-net to preserve image details and feature reuse of DenseNet to accuratelly remove snowflakes.Experiments show that the snow model-based deep networks can effectively detect and remove snowflakes from images.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229