检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段献葆[1] 曹琴琴 谭红霞 DUAN Xian-bao;CAO Qin-qin;TAN Hong-xia(School of Sciences,Xi'an University of Technology,Xi'an 710048)
机构地区:[1]西安理工大学理学院
出 处:《工程数学学报》2019年第4期431-438,共8页Chinese Journal of Engineering Mathematics
基 金:陕西省重点研发计划项目(2017GY-090);陕西省自然科学基础研究计划(2019JM-367; 2019JM-284)~~
摘 要:为了减少解在较小的局部区域内有着很强的奇异性、剧烈变化等的偏微分方程求解问题的计算量,提出了一种基于方程求解的移动网格方法,并将其应用于二维不可压缩Navier-Stokes方程的求解.与已有的大部分移动网格方法不同,网格节点的移动距离是通过求解一个变系数扩散方程得到的,避免了做区域映射,也不需要对控制函数进行磨光处理,所以算法很容易编程实现.数值算例表明所提算法能够在解梯度较大的位置加密网格,从而在保证提高数值解的分辨率的前提下,可以很好地节省了计算量.由于Navier-Stokes的典型性,所得算法能够推广到求解很大一类偏微分方程数值问题.In order to reduce the computational cost of solving partial differential equation (PDE), whose solution has strong singularity or drastic change in a small local area, a moving mesh method based on equation solution is proposed and applied to solve the two-dimensional incompressible Navier-Stokes equations. Different from the most existing moving mesh methods, the moving distance of the nodes is obtained by solving a variable-coefficient diffusion equation, which avoids regional mapping and does not need to smooth the monitoring function, so the algorithm is easier to program and implement. Numerical examples show that the proposed algorithm can refine the mesh in the position where the gradient of the solution changed drastically, which can save a lot of computation time on the premise of improving the resolution of the numerical solution. Due to the typicality of the Navier-Stokes equations, the proposed algorithm can be generalized to solve many similar partial differential equations numerically.
关 键 词:移动网格方法 有限元方法 NAVIER-STOKES方程
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117