检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赖佩霞 王晓东[1] 章联军[1] LAI Peixia;WANG Xiaodong;ZHANG Lianjun(Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China)
机构地区:[1]宁波大学信息科学与工程学院
出 处:《宁波大学学报(理工版)》2019年第5期36-41,共6页Journal of Ningbo University:Natural Science and Engineering Edition
基 金:国家科技支撑计划项目(2012BAH67F01);国家自然科学基金(U1301257);浙江省自然科学基金(LY17F010005)
摘 要:为解决蔬菜识别领域缺少带标签样本的问题,提出了一种基于迁移学习的图像识别方法.首先,将原始数据集利用数据增强扩大样本数据量后引入到大规模数据集上的预训练模型.针对迁移过程中高层特征的领域特定性导致的网络泛化性能差,通过加入两层自适应层参数初始化后重新训练得到基本模型;对该基本模型再利用参数冻结的迁移方式进一步调优参数,得到用于蔬菜图像识别的最终网络模型.实验表明,基于CaffeNet和ResNet10两个小型网络的迁移策略可以较好地处理小样本的蔬菜图像识别,训练得到的模型准确率分别为94.97%、96.69%.与其他迁移算法及传统的神经网络方法相比,该算法具有更高的识别性以及更强的鲁棒性.To solve the problem of lacking the labeled samples in vegetable recognition domain, a method for image recognition based transfer learning is proposed. Firstly, raw data are expanded by the data augmentation technique, then pre-trained models on the large-scale data sets are introduced to the target data set to train for the base model, where initializing two additional adaptive layers is performed. This step is aimed to solve the poor generalization performance caused by the transferred domain specific high-level features. Next, the final model is obtained for recognizing vegetable images by adopting the fine-tuning method with several layers frozen. Experimental results show that, based on CaffeNet and ResNet10, the proposed transfer approach reaches the accuracy of 94.97%, 96.69%, respectively, and can effectively process small samples in vegetable image recognition with higher accuracy and better robustness comparing to other transferring algorithms and the conventional convolution neural networks.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.162.176