检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:查志华[1] 邓红涛[1] 田敏[1] Zha Zhihua;Deng Hongtao;Tian Min(College of Information Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China)
机构地区:[1]石河子大学信息科学与技术学院
出 处:《信息与电脑》2019年第15期35-36,共2页Information & Computer
摘 要:随着时代的快速发展,对于监控视频处理,传统人工处理方式已不能满足社会实际发展需求。智能监控依靠目标检测实现监控,目标识别成为计算机视觉领域的重要研究方向,主要从图像或者视频中检测某一类别的目标。基于此,分析卷积神经网络目标识别算法,研究目标检测算法存在的问题,并提出相应对策,有效提高检测算法的有效性和精确度,从而推动智能视频监控的快速发展和广泛应用。With the rapid development of the times, for surveillance video processing, traditional manual processing methods can not meet the actual needs of social development. Intelligent surveillance relies on target detection to achieve surveillance. Target recognition has become an important research direction in the field of computer vision. It mainly detects a certain category of targets from images or videos. Based on this, the convolutional neural network target recognition algorithm is analyzed, the existing problems of target detection algorithm are studied, and the cor responding countermeasures are put forward to effectively improve the effectiveness and accuracy of detection algorithm, thus promoting the rapid development and wide application of intelligent video surveillance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145