检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵瑞祥 侯宏花[1,2] 张鹏程[1,2] 刘祎[1,2] 田珠 桂志国[1,2] ZHAO Ruixiang;HOU Honghua;ZHANG Pengcheng;LIU Yi;TIAN Zhu;GUI Zhiguo(School of Information and Communication Engineering,North University of China,Taiyuan Shanxi 030051,China;Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data(North University of China),Taiyuan Shanxi 030051,China)
机构地区:[1]中北大学信息与通信工程学院,太原030051 [2]生物医学成像与影像大数据山西省重点实验室(中北大学),太原030051
出 处:《计算机应用》2019年第9期2580-2585,共6页journal of Computer Applications
基 金:国家重大科学仪器设备开发专项(2014YQ24044508);国家自然科学基金资助项目(61671413,61801438);中北大学青年学术带头人项目(QX201801);山西省应用基础研究项目(201801D221196)~~
摘 要:针对在球栅阵列(BGA)气泡检测中,由于图像干扰因素的多样性导致焊球存在边缘气泡与背景之间灰度级接近,从而造成焊球气泡分割结果不精确的问题,提出了一种结合全卷积神经网络(FCN)和K均值(K-means)聚类分割的焊球气泡分割方法。首先根据所制作的BGA标签数据集搭建FCN,通过训练该网络得到合适的网络模型,再对待测BGA图像进行预测处理得到图像的粗分割结果;然后对焊球区域映射提取,通过同态滤波法提高气泡区域辨识度,再使用K-means聚类分割对图像进行细分割处理,得到最终分割结果图;最后对原图焊球及气泡区域进行标注识别。将所提出的算法与传统BGA气泡分割算法进行对比,实验结果表明,所提出的算法对复杂BGA焊球的边缘气泡分割精确,图像分割结果与其真实轮廓高度匹配,准确度更高。For inaccurate segmentation results caused by the existence of edge bubbles in welding balls and the grayscale approximation of background due to the diversity of image interference factors in Ball Grid Array(BGA)bubble detection,a welding ball bubble segmentation method based on Fully Convolutional Network(FCN)and K-means clustering was proposed.Firstly,a FCN network was constructed based on the BGA label dataset,and trained to obtain an appropriate network model,and then the rough segmentation result of the image were obtained by predicting and processing the BGA image to be detected.Secondly,the welding ball region mapping was extracted,the bubble region identification was improved by homomorphic filtering method,and then the image was subdivided by K-means clustering segmentation to obtain the final segmentation result.Finally,the welding balls and bubble region in the original image were labeled and identified.Comparing the proposed algorithm with the traditional BGA bubble segmentation algorithm,the experimental results show that the proposed algorithm can segment the edge bubbles of complex BGA welding balls accurately,and the image segmentation results highly match the true contour with higher accuracy.
关 键 词:全卷积网络 K均值聚类 球栅阵列 边缘气泡 缺陷分割
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15