基于高光谱图像及深度特征的大米蛋白质含量预测模型  被引量:21

Prediction model of rice protein content based on hyperspectral image and deep feature

在线阅读下载全文

作  者:孙俊[1] 靳海涛 芦兵[1] 武小红[1] 沈继锋[1] 戴春霞[1] Sun Jun;Jin Haitao;Lu Bing;Wu Xiaohong;Shen Jifeng;Dai Chunxia(School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China)

机构地区:[1]江苏大学电气信息工程学院

出  处:《农业工程学报》2019年第15期295-303,共9页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家自然科学基金资助项目(31471413);江苏高校优势学科建设工程资助项目PAPD(苏政办发2011 6号);江苏省六大人才高峰资助项目(ZBZZ-019);常州市科技支撑(社会发展)项目(CE20185029)

摘  要:为了充分挖掘高光谱图像的光谱信息和图像信息,实现大米中蛋白质含量的无损检测,该文提出一种堆叠自动编码器(stacked auto-encoder,SAE)提取高光谱图像深度特征的方法,在高温(45℃)高湿(95%相对湿度)条件下对市售大米进行放置处理,以6组不同放置时间(0,24,48,72,96和120 h)共420个大米样本(每组70个)为对象,利用可见光/近红外高光谱成像仪采集高光谱图像(400~1 000 nm,共478个波段),采用阈值分割法获取样本高光谱图像掩膜,分别提取掩膜后高光谱图像感兴趣区域(region of interest,ROI)的平均光谱信息和图像信息。应用多项式平滑(savitzky-golay,SG)对获取的光谱曲线进行预处理,利用SAE提取光谱深度特征,采用支持向量机回归(support vector regression,SVR)建立预测模型,结果表明训练集决定系数RC^2、训练集均方根误差RMSEC、预测集决定系数RP^2和预测集均方根误差RMSEP分别为0.976 2、0.068 6 g/(100 g)、0.939 2和0.115 3 g/(100 g)。将图像尺寸统一为28像素×28像素的灰度图并扁平化处理,利用SAE提取图像深度特征,结果表明RC^2、RMSEC、RP^2和RMSEP分别为0.915 4、0.051 0 g/(100 g)、0.821 0和0.111 8 g/(100 g)。进一步融合光谱信息和图像信息,结果表明RC^2、RMSEC、RP^2和RMSEP分别为0.971 0、0.077 2 g/(100 g)、0.964 4和0.085 1 g/(100 g),相较于光谱信息,RP^2提升幅度2.68%;相较于图像信息,RP^2提升幅度17.47%。研究表明,充分挖掘大米样本高光谱图像中的光谱信息和图像信息并进行融合,利用SAE提取光谱-图像融合深度特征,可有效提高模型的预测精度,为大米蛋白质含量无损检测提供了理论依据,具有良好的应用前景。In order to fully explore useful spectral and image information of hyperspectral images,a method of extracting the deep feature of hyperspectral images based on stacked auto-encoder(SAE)was investigated in this study,then the extracted deep feature was used to establish support vector regression(SVR)model to realize non-destructive detection of protein content in rice.Firstly,420 rice samples(70 in each group)were placed in 6 groups at different storage time(0,24,48,72,96 and 120 h)under the condition of high temperature(45℃)and high humidity(95%relative humidity).Secondly,the hyperspectral images(400-1 000 nm)of 6 group rice samples with different protein content were collected by the hyperspectral image acquisition system.After hyperspectral images collection,the Kjeldahl method for determination of nitrogen was used to detect the protein content of rice samples.According to the chemical detection results,the protein content of the rice samples decreased from 7.78 to 7.62 g/(100 g)with the increase of storage time.Thirdly,in order to separate samples from background,the threshold segmentation method was used to obtain the sample mask in ENVI software,then the mask was applied to the hyperspectral image containing only rice samples.The rice sample area was chosen as region of interest(ROI),and the average spectral data and image information of ROI was extracted respectively.Finally,SAE was used to extract deep feature of spectral data,image information and fusion data.1)For spectral information,savitzky-golay(SG)was used to pre-process the obtained spectral data,and SAE was used to extract the deep feature,then SVR was used to establish the prediction model,and grid search method was used to optimize the kernel parameter g and penalty factor c in SVR.The results showed that the optimal scale of SAE was 478-400-290-70,and R^2C(determinant coefficient of calibration set),R^2P(determinant coefficient of prediction set),RMSEC(root mean square error of calibration set),RMSEP(root mean square error of prediction set

关 键 词:无损检测 光谱分析 模型 高光谱图像 堆叠自动编码器 深度特征 大米 蛋白质含量 

分 类 号:S126[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象