检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾陈楠 曾晓勤[1] GU Chen-nan;ZENG Xiao-qin(College of Computer and Information,Hohai University,Nanjing 211100,China)
机构地区:[1]河海大学计算机与信息学院
出 处:《计算机与现代化》2019年第11期75-80,共6页Computer and Modernization
摘 要:传统的2D卷积神经网络在进行视频识别时容易丢失目标在时间维度上的相关特征信息,导致识别准确率降低。针对该问题,本文采用3D卷积网络作为基本的网络框架,使用3D卷积核进行卷积操作提取视频中的时空特征,同时集成多个3D卷积神经网络模型对动态手势进行识别。为了提高模型的收敛速度和训练的稳定性,运用批量归一化(BN)技术优化网络,使优化后的网络训练时间缩短。实验结果表明,本文方法对于动态手势的识别具有较好的识别结果,在Sheffield Kinect Gesture(SKIG)数据集上识别准确率达到98.06%。与单独使用RGB信息、深度信息以及传统2D CNN相比,手势识别率均有所提高,验证了本文方法的可行性和有效性。In video recognition,the traditional 2D convolution neural networks are easy to lose the relevant feature information in time dimension,which leads to the reduction of recognition accuracy.This paper uses 3D convolutional neural network as a basic network framework with 3D convolution kernel to extract the temporal and spatial features of videos,at the same time,the integration of multiple 3D convolutional neural network models are proposed to recognize dynamic gesture.In order to improve the convergence speed of the model and the stability of training,the network is optimized by Batch Normalization(BN)technology to shorten the training time of the network.Experimental results show that the proposed method has a good recognition performance for dynamic gesture recognition,and the recognition accuracy reaches 98.06%in Sheffield Kinect Gesture(SKIG)data set.Solely compared with RGB information,depth information and traditional 2D CNN,the gesture recognition rate is higher,which verifies the feasibility and effectiveness of the proposed method.
关 键 词:3D卷积神经网络 光流 集成学习 深度学习 动态手势识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225