基于RBF神经网络的液黏调速离合器活塞位移控制器设计  被引量:2

Displacement controller design for piston of hydro-viscous clutch based on RBF neural network

在线阅读下载全文

作  者:秦永峰 龚国芳[1] 王飞[1] 孙辰晨[1] QIN Yong-feng;GONG Guo-fang;WANG Fei;SUN Chen-chen(State Key Lab of Fliud Power Transmission and Control,Zhejiang University,Hangzhou 310027,China)

机构地区:[1]浙江大学流体动力与机电系统国家重点实验室

出  处:《工程设计学报》2019年第5期603-610,共8页Chinese Journal of Engineering Design

基  金:国家重点研发计划资助项目(2017YFB1302602,2017YFB1302604);国家重点基础研究发展计划(973计划)资助项目(2015CB058100,2015CB058103)

摘  要:针对液黏调速离合器存在非线性和控制精度较低,难以满足工业领域较高的传动特性需求等问题,提出了基于RBF(radial basis function,径向基函数)神经网络的液黏调速离合器活塞位移滑模控制策略。对液黏调速离合器局部结构进行改进,增设位移传感器和导电滑环以采集位移信号;建立了电液比例溢流阀和液黏调速离合器的数学模型,设计并分析了基于RBF神经网络的液黏调速离合器活塞位移滑模控制器;搭建了液黏调速离合器AMESimMATLAB联合仿真模型。仿真结果表明:基于RBF神经网络的液黏调速离合器活塞位移滑模控制可以有效地适应液黏调速离合器的非线性,并解决滑模控制的抖振问题,能够提高控制精度,使液黏调速离合器控制器具有很好的鲁棒性,可以满足较高的工业需求。The hydro-viscous clutch has relatively serious nonlinearity and lower control accuracy,which is difficult to meet the requirement of high transmission characteristics in the industrial field.Based on these issues, sliding mode control strategy of piston displacement based on RBF(radial basis function) neural network was proposed. The local structure of the hydro-viscous clutch was improved.The displacement sensor and the conductive slip ring were added to acquire the displacement signal. The mathematical models of the electro-hydraulic proportional relief valve and the hydro-viscous clutch were derived. The sliding mode controller based on RBF neural network of piston displacement of hydro-viscous clutch was designed and analyzed. An AMESim-MATLAB co-simulation model of hydroviscous clutch was built. The simulation results showed that the sliding mode control of piston displacement based on RBF neural network(RBFSMC) could effectively cope with the serious nonlinearity of hydro-viscous clutch, and solved the chattering phenomenon of sliding mode control.The piston displacement controller can improve the control precision, make the controller of hydroviscous clutch have good robustness and meet the high industrial demand.

关 键 词:液黏调速离合器 位移控制 RBF神经网络 滑模控制 联合仿真 

分 类 号:TH133.4[机械工程—机械制造及自动化] TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象