检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张珺[1] Zhang Jun(Shangluo Vocational and Technical College,Shangluo,726000,China)
出 处:《现代科学仪器》2019年第3期44-47,共4页Modern Scientific Instruments
摘 要:为提高音乐风格识别的准确率,提出了一种基于样本熵和SVM的音乐风格识别模型。通过EMD分解提取不同音乐风格信号的样本熵,将样本熵作为SVM的输入,音乐风格类型作为SVM的输出,建立SVM的音乐风格识别模型。研究结果表明,与RBFNN、BPNN和KNN相比,SVM音乐风格识别准确率高达98.43%,从而说明SVM可以有效提高音乐风格识别的准确率。To improve the accuracy of music style recognition,a model based on sample entropy and SVM is proposed.The sample entropy of different music style signals is extracted by EMD decomposition,the sample entropy is used as the input of SVM,and the music style type is used as the output of SVM to establish SVM's music style recognition model.The results of the study show that compared with RBFNN,BPNN and KNN,SVM music style recognition accuracy rate is as high as 98.43%,which shows that SVM can effectively improve the accuracy of music style recognition.
关 键 词:音频特征 支持向量机 经验模态分解 音乐风格 样本熵
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117