检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高元华 徐燕 陈惠 GAO Yuanhua;XU Yan;CHEN Hui(Jingzhou Polytechnic Vocational College,Jingzhou 434000)
机构地区:[1]荆州理工职业学院
出 处:《食品工业》2019年第11期232-235,共4页The Food Industry
摘 要:以立式食品包装机械为研究对象,为提高其包装材料恒速控制精度,提出了一种基于改进BP神经网络的控制策略。分析了影响系统控制精度的主要因素,在此基础上将BP神经网络与PID控制方法相结合,通过神经网络的自学习、加权系数的调整,优化PID控制器参数Ki、Kp、Kd,并将粒子群算法引入到神经网络中作为其学习算法,以有效提高BP神经网络算法的收敛速度。同时基于PLC搭建立式包装机控制系统,介绍控制系统的硬件结构。结果表明,该方法包装精度约为±0.2 mm,有效提高了包装材料供送速度精度,使其速度误差控制在允许范围以内。Taking vertical food packaging machinery as the research object, a control strategy based on improved BP neural network is proposed to improve the constant speed control accuracy of its packaging materials. The main factors influencing the control precision of the system are analyzed, and BP neural network and PID control method are combined on this basis. Through self-learning of neural network and adjustment of weighting coefficient, PID controller parameters of Ki, Kp and Kd are optimized. Particle swarm optimization(PSO) is introduced into neural network as its learning algorithm to effectively improve the convergence speed of BP neural network algorithm. At the same time, the control system of vertical packaging machine is built based on PLC, and the hardware structure of the control system is introduced. Experimental results show that the control method proposed has a packaging accuracy of about ±0.2 mm, which effectively improves the accuracy of packaging material feeding speed and controls its speed error within the allowable range.
分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151