检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阿力非日[1] 张艳 ALI Feiri;ZHANG Yan(School of Yi Language and Culture,Xichang University,Xichang,Sichuan 615000,China)
机构地区:[1]西昌学院彝语言文化学院
出 处:《西昌学院学报(自然科学版)》2019年第4期48-51,共4页Journal of Xichang University(Natural Science Edition)
摘 要:从多个角度讨论了求极限的方法。首先介绍了相对简单的极限的求法,探讨了利用单调有界原理及压缩映像原理求极限和利用Stolz定理求极限。其次是对复合函数求极限,应用Topliz定理的关键在于构造一个Topliz变换得到了特殊的解法,求出复杂函数极限。最后总结了数学分析里求极限的各种方法,得出相应极限的类型、原理,并列举例题。In this paper we discuss different methods for solving the limit. First we introduce the relatively easier methods of the monotonic bounded principle and the compression image principle and the Stolz theorem to solve the limit. Second, we discuss the methods to solve the limit of a complex function, and we point out that the key to applying the Topliz theorem is to construct a Topliz transformation to obtain a special solution to the limit of a complex function. Based on these, we summarize the various methods for limit solutions in mathematical analysis.Finally, corresponding limit types and principles are concluded, and examples are given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.52.105