单参数离散时间非线性系统的可镇定性定理(英文)  

Stabilizability theorem of discrete-time nonlinear systems with scalar parameters

在线阅读下载全文

作  者:刘兆波 李婵颖 LIU Zhao-bo;LI Chan-ying(The Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China;School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院数学与系统科学研究院系统科学研究所系统控制重点实验室,北京100080 [2]中国科学院大学数学科学院,北京100049

出  处:《控制理论与应用》2019年第11期1929-1935,共7页Control Theory & Applications

基  金:Supported by the National Key R&D Program of China(2018YFA0703800);the National Natural Science Foundation of China(11688101)

摘  要:本文对基本的离散时间非线性单参数随机系统建立了可镇定性定理.该定理推进了文献[1]的结果,进一步完善了关于离散时间自适应控制的反馈能力刻画.离散时间单参数系统可镇定的一个重要非线性临界常数是4,用以刻画关于幂函数类系统的反馈能力.而作为本文定理的应用,本文对一类典型的单参数离散时间非线性随机系统发现了新的可镇定临界常数2.This paper advances [1] by deducing a stabilizability theorem for discrete-time nonlinear systems with scalar parameters, which takes a step forward to the complete characterization of feedback limitations in discrete-time adaptive nonlinear control. It is well-known that exponent 4 is an important critical number to characterize the feedback capability for the basic discrete-time scalar-parameter systems, which are governed by power functions. As an application of our theorem, a new critical number 2 is derived for a typical class of discrete-time nonlinear stochastic systems with scalar parameters.

关 键 词:反馈极限 自适应控制 最小二乘法 可镇定性 非线性系统 离散时间 

分 类 号:G63[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象