检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李珊珊 张福泉 LI Shanshan;ZHANG Fuquan(Department of Accounting,Fujian Business University,Fuzhou 350012,China;School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China)
机构地区:[1]福建商学院会计系,福州350012 [2]北京理工大学计算机学院,北京100081
出 处:《长春大学学报》2020年第1期31-35,共5页Journal of Changchun University
基 金:福建省科技厅项目(2018H0028)
摘 要:为了提高企业财务长期预测算法的准确度,提出采用基于小波支持向量机的策略来完成财务预测。将基本小波变换与神经网络相结合,完成财务预测指标特征向量的提取,借助支持向量机的方法对特征向量进行有效降维并得到最优解,再通过最优解来完成分类,从而预测企业财务运行情况。通过将预测结果与样本实际数据对比,证明提出的算法预测准确度高,在企业财务长期预测方面有较强的适用性。In order to improve the accuracy of long-term financial prediction algorithm,a strategy based on wavelet support vector machine is given to complete financial prediction. The combination of basic wavelet transform and neural network is used to extract the feature vectors of financial prediction indicators,the effective dimension reduction on the feature vectors is made by support vector machine to obtain the optimal solution,and the classification is completed through the optimal solution,so as to predict the financial operation of enterprises. Experiments show that the prediction accuracy of this algorithm is high by comparing the prediction results with the actual data of samples,having a strong applicability in the long-term financial prediction of enterprises.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222