检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周德亮[1] 王宗慧 李跃 ZHOU De-liang;WANG Zong-hui;LI Yue(College of Mathmatics,Liaoning Normal University School,Dalian 116029,China)
机构地区:[1]辽宁师范大学数学学院
出 处:《吉林师范大学学报(自然科学版)》2020年第1期47-52,共6页Journal of Jilin Normal University:Natural Science Edition
基 金:国家自然科学基金项目(61771229)
摘 要:给出了无网格局部Petrov-Galerkin(MLPG)法与配点法耦合求解导水系数为分片常数的非均质承压稳定流问题的方法.在各子区分界线布置的节点上,应用相容条件建立配点方程组,在除分界线外的其他节点上建立MLPG方程组,联立得到求解水头函数数值解的耦合方程组.编写了相应MATLAB程序,进行了具体模型计算,并与MLPG法和边界元法的计算结果进行了比较,结果表明该方法求解问题有效,精度较MLPG法计算精度显著提高,且明显优于边界元法.A coupling method of meshless local Petrov-Galerkin(MLPG)method and the collocation method was given to solve the problem of heterogeneous pressurized steady flow,which the transmissibility coefficient were fragmentation constant.The compatible conditions were applied to set up the system of collocation equations on the nodes of each subdomain boundary arrangement,and the system of MLPG equations were established on other nodes except the subdomain boundary,and the coupled equations for solving the numerical solution of the head function were obtained simultaneously.The corresponding MATLAB program was written and the concrete model calculation was carried out,compared with the results of MLPG method and boundary element method,the results show that the method is effective in solving the problem,and the accuracy is significantly higher than that of MLPG method,moreover,it is obviously better than the boundary element method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222