检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛珊[1] 吕旸 吕琼莹[1] 刘正彬 郭建波 XUE Shan;LYU Yang;LYU Qiong-ying;LIU Zheng-bin;GUO Jian-bo
机构地区:[1]长春理工大学机电工程学院
出 处:《制造业自动化》2020年第1期83-87,97,共6页Manufacturing Automation
基 金:吉林省科技发展计划项目(20160204015GX)
摘 要:针对工业流水线上激光扫描工件获得的点云数据的配准问题,提出了一种基于点云数据几何特征改进的点云自动配准新算法。新算法首先根据点云数据中法向量的变化规律选取特征点,作为初始的匹配点集;然后运用一种根据点对间距离约束优化的随机抽样一致(RANSAC)算法对数据初始匹配;并运用k-d tree加速改进的最近点迭代(ICP)算法进行精确匹配;并运用四元数法求得配准参数。分别对提出的新算法、PCA改进算法和经典ICP算法进行了实验,并对实验结果进行了对比。对比结果表明新算法能够实现配准,并显著提高了配准的速度和精度,表明了新算法的有效性,对实际应用具有一定的现实意义。
关 键 词:点云配准 RANSAC k-d tree ICP
分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166