基于因素分析和SVM模型的江海联运运量预测方法  被引量:3

Method for prediction of river-sea combined transport volume based on factor analysis and SVM model

在线阅读下载全文

作  者:杨丁红 郑彭军[1,2,3] YANG Dinghong;ZHENG Pengjun(Faculty of Maritime and Transportation,Ningbo University,Ningbo 315832,China;Collaborative Innovation Center for Ningbo Port and Logistics Service System,Ningbo 315832,China;Ningbo University Sub-centre,National Traffic Management Engineering&Technology Research Center,Ningbo 315832,China)

机构地区:[1]宁波大学海运学院,浙江宁波315832 [2]宁波港航物流服务体系协同创新中心,浙江宁波315832 [3]国家道路交通管理工程技术研究中心宁波大学分中心,浙江宁波315832

出  处:《宁波大学学报(理工版)》2020年第2期86-92,共7页Journal of Ningbo University:Natural Science and Engineering Edition

基  金:国家自然科学基金(61074142);国家重点研发计划政府间国合重点专项(2017YFE9134700);欧盟地平线2020项目(690713);浙江省自然科学基金(LY15E080013)

摘  要:鉴于江海联运运量受众多因素的影响,为了解决江海联运运量预测问题,先对江海联运运量影响因素进行分析,再用灰色关联度分析筛选出其中的典型因素.在此基础上应用粒子群算法优化的支持向量机建立江海联运运量预测模型,应用于宁波港域江海联运量的预测.结果表明,该模型与传统时间序列预测方法相比具有较高的拟合度和预测精度,为解决江海联运运量等多因素非线性系统预测提供了一条新的途径.The volume of river-sea combined transport is affected by many factors.In order to solve the problems found in forecasting this volume,its influencing factors are analyzed first,and then typical factors are selected by grey relation analysis.Based on the result,a support vector machine(SVM),optimized by particle swarm optimization(PSO)algorithm,is applied to establish a predictive model of the river-sea combined transport volume.The model is then applied to the prediction of the river-sea combined transport volume in Ningbo Port.The results show that the model is superior to the traditional time series forecasting method,and has a high degree of fitness and forecasting accuracy.It provides a new way to solve the multi-factor nonlinear system prediction problems,such as the one in river-sea combined transport volume prediction.

关 键 词:江海联运运量 因素分析 灰色关联度分析 粒子群算法 支持向量机 

分 类 号:U6-9[交通运输工程—船舶与海洋工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象