检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯成军 米据生[1] 梁美社 HOU Cheng-jun;MI Ju-sheng;LIANG Mei-she(College of Mathematics and Information Science,Hebei Normal University,Shijiazhuang 050024,China;Department of Scientific Development and Technology and School-Business Cooperation,Shijiazhuang University of Applied Technology,Shijiazhuang 050081,China)
机构地区:[1]河北师范大学数学与信息科学学院,石家庄050024 [2]石家庄职业技术学院科技发展与校企合作部,石家庄050081
出 处:《计算机科学》2020年第3期87-91,共5页Computer Science
基 金:国家自然科学基金(61573127);河北省自然科学基金(A2018210120);河北师范大学研究生创新项目基金(CXZZSS2017046)~~
摘 要:经典的多粒度粗糙集模型采用多个等价关系(多粒度结构)来逼近目标集。根据乐观和悲观策略,常见的多粒度粗糙集分为两种类型:乐观多粒度粗糙集和悲观多粒度粗糙集。然而,这两个模型缺乏实用性,一个过于严格,另一个过于宽松。此外,多粒度粗糙集模型由于在逼近一个概念时需要遍历所有的对象,因此非常耗时。为了弥补这一缺点,进而扩大多粒度粗糙集模型的使用范围,首先在不完备信息系统中引入了可调节多粒度粗糙集模型,随后定义了局部可调节多粒度粗糙集模型。其次,证明了局部可调节多粒度粗糙集和可调节多粒度粗糙集具有相同的上下近似。通过定义下近似协调集、下近似约简、下近似质量、下近似质量约简、内外重要度等概念,提出了一种基于局部可调节多粒度粗糙集的属性约简方法。在此基础上,构造了基于粒度重要性的属性约简的启发式算法。最后,通过实例说明了该方法的有效性。实验结果表明,局部可调节多粒度粗糙集模型能够准确处理不完备信息系统的数据,降低了算法的复杂度。In classical multi-granulation rough set models,multiple equivalent relations(multiple granular structures)are used to approximate a target set.According to optimistic and pessimistic strategies,there are two types of common multi-granulation called optimistic multi-granulation and pessimistic multi-granulation respectively.The two combination rules seem to lack of practicability since one is too restrictive and the other too relaxed.In addition,multi-granulation rough set model is highly time-consuming because it is necessary to scan all the objects when approximating a concept.To overcome this disadvantage and enlarge the using range of multi-granulation rough set model,this paper firstly introduced the adjustable multi-granulation rough set model in incomplete information system and defined the local adjustable multi-granulation rough set model.Secondly,this paper proved that local adjustable multi-granulation rough set and adjustable multi-granulation rough set have the same upper and lower approximations.By defining the concepts of lower approximation cosistent set,lower approximation reduction,lower approximation quality,lower approximation quality reduction,and importance of internal and external,a local adjustable multi-granulation rough set model for attribute reduction was proposed.Furthermore,a heuristic algorithm of attribute reduction was constructed based on granular significance.Finally,the effectiveness of the method was illustrated through examples.The experimental results show that local adjustable size rough set model can accurately process the data of incomplete information system,and it can reduce the complexity of the algorithm.
关 键 词:多粒度 粗糙集 不完备信息系统 近似质量 属性约简
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.203.35