检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王仁强[1] 王昭淯 邓华[1] WANG Ren-qiang;WANG Zhao-yu;DENG Hua(Navigation College,Jiangsu Maritime Institute,Nanjing Jiangsu 211170,China)
机构地区:[1]江苏海事职业技术学院航海技术学院,江苏南京211170
出 处:《广州航海学院学报》2020年第1期31-34,共4页Journal of Guangzhou Maritime University
摘 要:利用GA智能优化算法和RBF神经网络逼近算法设计了一种USV运动滑模理想跟踪控制方法.首先利用改进的遗传算法对RBF网络参数进行在线寻优以进而提高其逼近性能.其次,将学习速度较快的局部RBF神经网络对滑模控制设计中存在的船舶运动系统函数不确定项进行逼近,使得由于滑模面的不间断切换引起的控制输入抖振问题得到有效地解决.对比实验说明了在同等条件下,上述智能控制系统稳定时间更快,超调量更小,以及输入舵角更平滑.The intelligent tracking algorithm of Unmanned Surface Vehicle was proposed based on the optimized RBF network.By modifying the adaptation value and the mutation probability,it is possible to solve the problem of premature convergence of the GA which was used to optimize the network parameters online to solve the problem,and then improve its approximation performance.And then,the RBF neural network,with the advantage of learning fast,was used to approximate the uncertainties of the function of the USV motion system during the ideal Sliding Mode Control designing so that the control input chattering problem caused by the uninterrupted switching of the sliding surface is effectively overcome.A comparative study shows that under the same conditions,the stabilization time of the intelligent control system is faster,the average overshoot is smaller,and the input rudder angle is smoother.
关 键 词:遗传优化 RBF神经网络 滑模控制 水面无人船艇
分 类 号:U666.153[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.123.140