激光雷达场景三维姿态点法向量估计方法  被引量:16

Pose estimation algorithms for lidar scene based on point normal vector

在线阅读下载全文

作  者:张楠[1] 孙剑峰[1] 姜鹏 刘迪[1] 王鹏辉[3] Zhang Nan;Sun Jianfeng;Jiang Peng;Liu Di;Wang Penghui(National Key Laboratory of Science and Technology on Tunable Laser,Institute of Opto-Electronic,Harbin Institute of Technology,Harbin 150001,China;Science and Technology on Comples System Control and Intelligent Agent Cooperation Laboratory,Beijing 100074,China;China Airborne Missile Academy,Louyang 471009,China)

机构地区:[1]哈尔滨工业大学可调谐(气体)激光技术重点实验室光电子技术研究所,黑龙江哈尔滨150001 [2]复杂系统控制与智能协同技术重点实验室,北京100074 [3]中国空空导弹研究院,河南洛阳471009

出  处:《红外与激光工程》2020年第1期163-170,共8页Infrared and Laser Engineering

摘  要:激光成像雷达能够获取反映目标三维空间位置的点云数据,可直接估计目标三维姿态角,是完成特征提取、目标配准等工作的重要参数。实现场景的三维姿态估计,借鉴基于点法向量的三维姿态估计算法(PDVA),针对真实场景中表征场景坐标系(SCS)坐标轴的正方向向量偏差较大的问题,提出了一种优化的三维姿态估计算法(OPDVA)。该方法利用场景点云存在大面积近似平面区域的特点,通过随机抽样一致算法(RANdom SAmple Consensus,RANSAC)的平面模型对聚类中其他方向的点法向量进行滤除,得到最优拟合平面对应的法向量即为修正后的SCS坐标轴。利用旋转变换和重采样等技术手段,分别采用矩形包围盒法、PDVA和OPDVA对3组真实场景距离像进行实验。实验结果表明:OPDVA方法对场景的姿态估计明显优于其他两种方法,姿态估计误差不超过4°,对存在遮挡的场景也同样适用。Laser imaging radar can obtain point cloud data reflecting the three-dimensional position of the target,directly estimate the three-dimensional attitude angle of the target,and is an important parameter for feature extraction and target registration.To realize the three-dimensional attitude estimation of scenes,an optimized three-dimensional attitude estimation algorithm(OPDVA)based on point normal vector(PDVA)was proposed to solve the problem of large deviation of the positive vector representing the coordinate axis of scene coordinate system(SCS)in real scenes.In this method,remove point normal vectors in other directions in the cluster by RANdom SAmple Consensus(RANSAC)plane model was removed,and the corresponding normal vectors of the optimal fitting plane were the revised SCS coordinate axes.Using rotational transformation and resampling techniques,3 groups of real scene range image were experimented with rectangular bounding box method,PDVA and OPDVA respectively.The experimental results show that the OPDVA method is superior to the other two methods in pose estimation.The error of pose estimation does not exceed 4°,and it is also suitable for occlusion scenarios.

关 键 词:激光雷达 姿态估计 场景目标 随机抽样一致算法 

分 类 号:TN29[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象