自适应控制下图像分割及并行挖掘算法  被引量:8

Image segmentation and parallel mining algorithm based on adaptive control

在线阅读下载全文

作  者:王春华 韩栋[2] WANG Chun-hua;HAN Dong(School of Animation,Huanghuai University,Zhumadian 463000,China;School of Information Engineering,Huanghuai University,Zhumadian 463000,China)

机构地区:[1]黄淮学院动画学院,河南驻马店463000 [2]黄淮学院信息工程学院,河南驻马店463000

出  处:《沈阳工业大学学报》2020年第2期197-202,共6页Journal of Shenyang University of Technology

基  金:河南省科技计划项目(182102310949).

摘  要:针对海量图像数据中目标的分割及识别问题,提出了一种自适应控制下图像分割及并行挖掘算法.采用隶属度函数窗口宽度在图像直方图控制下自适应调整模糊阈值图像分割方法对图像进行分割,提取出感兴趣的潜在目标区域,基于共轭梯度法改进的BP神经网络算法对潜在的目标区域进行训练和识别,识别算法基于OpenMP并行处理模型开发来提高执行效率.结果表明:本文算法相对于基于偏移场的模糊C均值、灰度波动变换自适应阈值和自适应最小误差阈值具有更高的分割准确率,与传统神经网络算法的识别结果相比,平均识别率提高了8%,运行时间减少了2. 5 s.Aiming at the segmentation and recognition problem of targets in the massive image data,an image segmentation and parallel mining algorithm based on the adaptive control was proposed. The fuzzy threshold image segmentation method was used to segment the images with the adaptive adjustment of membership function window width under the control of image histogram. The potential interested target area was extracted. The BP neural network algorithm based on the conjugate gradient method was used to train and identify the potential target area,and the execution efficiency was improved with the recognition algorithm based on the development of OpenMP parallel processing model. The results show that the algorithm has higher segmentation accuracy than the fuzzy C-means based on the offset field,the adaptive threshold of gray-scale fluctuation transformation and the adaptive minimum error threshold. In comparison with the recognition results of traditional neural network algorithm,the average recognition rate increases by 8%,and the operating time reduces by 2. 5 s.

关 键 词:图像分割 目标识别 数据挖掘 自适应 模糊阈值分割 BP神经网络 共轭梯度法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象