检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王雪娆 孙长银[2] 林晓波 余瑶[1] WANG Xue-rao;SUN Chang-yin;LIN Xiao-bo;YU Yao(School of Automation and Electrical Engineering,University of Science and Technology Beijing,Beijing 100083,China;School of Automation,Southeast University,Nanjing Jiangsu 210096,China)
机构地区:[1]北京科技大学自动化学院,北京100083 [2]东南大学自动化学院,江苏南京210096
出 处:《计算机仿真》2020年第3期37-41,88,共6页Computer Simulation
基 金:中央高校基本科研业务费专项基金资助(FRF-GF-17-B46);国家自然科学基金资助项目(61520106009,61533008,61473324)。
摘 要:针对四旋翼无人机姿态控制中模型不完整、部分参数和扰动不确定的问题,提出了一种基于神经网络的自适应控制方法,采用RBF神经网络对无人机姿态动力学模型中不确定和扰动部分进行学习,设计了以类反步法为基础,包含反馈控制和神经网络控制的自适应控制器,实现了对未知动态的准确逼近,解决了传统控制方法中过于依赖精确模型的问题。同时设计了神经网络的权值自适应律,实现了控制过程中的在线学习和调整,并且通过李雅普诺夫方法证明了闭环系统的稳定性。仿真结果表明,在存在较大扰动的情况下,上述控制器可得到很好的控制效果,可以实现误差的快速收敛,具有较好的鲁棒性和自适应性。In this paper,an adaptive attitude control scheme for quadrotor is proposed based on neural network,dealing with the attitude control problem including unmodeled uncertainties,parametric uncertainties and external disturbances.The uncertainties and disturbances in attitude dynamic model were learnt based on RBF neural network.The designed adaptive controller was based on backstepping method,including a feedback controller and a neural controller,which approximates unknown dynamics exactly and sloves the accurate model-independency problem in traditional control scheme.Meanwhile,the adaptive law for the weight of neural network was given to achieve the online learning and adjusting in the control process.The close-loop stability was proven with Lyapunov function.Simulation results are given to validate the effectiveness of the designed controller under the extreme disturbances,with rapid rate of convergence,showing better robustness and adaptivity.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28