检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李新春[1] 闫振宇 林森[1,2,3] 贾迪 LI Xin-chun;YAN Zhen-yu;LIN Sen;JIA Di(School of Electronics and Information Engineering,Liaoning Technical University,Huludao,Liaoning 125100,China;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110016,China)
机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125100 [2]中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳110016 [3]中国科学院机器人与智能制造创新研究院,沈阳110016
出 处:《光子学报》2020年第4期250-260,共11页Acta Photonica Sinica
基 金:国家自然科学基金(No.61601213);辽宁省教育厅科学研究一般项目(No.L2014132);辽宁省自然科学基金面上项目(No.2015020100)。
摘 要:为解决噪声干扰、数据丢失情况下迭代最近点算法的鲁棒性差、配准精度低等问题,提出一种基于邻域特征点提取和匹配的点云配准方法.首先定义一个由点的k邻域曲率、点与邻近点的法向量内积均值以及邻近点与邻域拟合平面的欧氏距离方差等三部分组成的邻域特征参数,结合在移动最小二乘表面构造的曲率特征参数对点云进行两次特征点提取;其次依据直方图特征定义三个匹配条件,并用双重约束获得正确的匹配点对;最后在配准阶段,采用双向构建k维树的迭代最近点算法实现精确配准.实验结果表明,该算法的配准精度较迭代最近点算法提高了90%以上,并且能够在噪声环境下有效地完成缺失点云的配准,在鲁棒性和精确配准方面有明显优势.In order to solve the problem of poor robustness and low registration accuracy of the iterative closest point algorithm under noise interference and data loss,a point cloud registration method based on neighborhood characteristic point extraction and matching is proposed.Firstly,a neighborhood characteristic parameter is defined,which is composed of three parts:the k-neighborhood curvature of the point,the normal vector inner product’mean value of the point and the neighborhood points,and the distance variance between the neighborhood points and the neighborhood fitted plane.Neighborhood characteristic parameters and curvature characteristic parameters constructed on moving least square surface are used to extract feature points twice.Secondly,three matching conditions are defined according to the histogram features,and the correct matching point pairs are obtained by double constraints.Finally,in the registration stage,the iterative closest point algorithm of bi-directional k-dimension tree is used to achieve accurate registration.The experimental results show that the registration accuracy of the proposed algorithm is more than 90%higher than that of the iterative closest point algorithm,and it can effectively complete the registration of missing point clouds in noisy environment,which has obvious advantages in robustness and precise registration.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28