检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡如华[1] 杨标 吴孙勇[1,2] CAI Ruhua;YANG Biao;WU Sunyong(Mathematics and Computer Science College of Guilin University of Electronic Technology,Guilin 541004,China;Guangxi Key Laboratory of Cryptography and Information Security,Guilin 541004,China)
机构地区:[1]桂林电子科技大学数学与计算科学学院,广西桂林541004 [2]广西密码学与信息安全重点实验室,广西桂林541004
出 处:《红外技术》2020年第4期385-392,共8页Infrared Technology
基 金:国家自然科学基金(61561016,61362005);广西密码学与信息安全重点实验室研究课题项目(GCIS201611)。
摘 要:针对目标检测概率较低导致单个传感器无法对目标进行有效检测并跟踪的问题,本文提出了多传感器箱粒子概率假设密度(multi-sensor box particle probability hypothesis density filter,MS-BOX-PHD)滤波器。MS-BOX-PHD滤波器首先将多个传感器的量测转换、融合成为一个量测集合,并利用箱粒子概率假设密度(box particle probability hypothesis density filter,BOX-PHD)滤波器对多个目标的状态进行预测和更新。数值实验表明,相较于单传感器箱粒子概率假设密度(Single-BOX-PHD)滤波器,MS-BOX-PHD滤波器在目标检测概率较低时,能够有效地对多目标的状态和数目进行估计;相较于区间量测下多传感器标准PHD粒子(multi-sensor standard probability hypothesis density particle filter with interval measurement,IM-PHD-PF)滤波器,在达到相同的跟踪性能时,计算效率提升了38.57%。As single sensors cannot detect and track targets with low detection probability,a new multisensor box particle probability hypothesis density filter is proposed in this paper.The MS-BOX-PHD filter converts and fuses multiple sensor measurement sets into a new set,and the multitarget states are predicted and updated using a box particle probability hypothesis density filter.Numerical experiments show that the MS-BOX-PHD filter can estimate the state and number of multitargets when the target detection probability is low,unlike a single sensor box particle probability hypothesis density filter.Compared with the multisensor standard probability hypothesis density filter with interval measurement,the computational efficiency increased by 38.57%for the same tracking performance.
关 键 词:多传感器 箱粒子滤波 概率假设密度滤波 区间量测
分 类 号:TP302.7[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30