检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓方安[1] DENG Fangan(School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, China)
机构地区:[1]陕西理工大学数学与计算机科学学院,陕西汉中723001
出 处:《安徽大学学报(自然科学版)》2020年第3期1-5,共5页Journal of Anhui University(Natural Science Edition)
基 金:国家自然科学基金资助项目(61561040)。
摘 要:Ravi Kumar Bandaru提出了BRK-代数的概念,并研究了相关性质,证明了所有满足结合律的BRK-代数都是群.讨论N(2,2,0)代数与BRK-代数的关系,进一步研究了N(2,2,0)代数的理想与滤子,并在N(2,2,0)代数的p-根集上构造了一个商代数.The concept of BRK-algebra was introduced and their properties were studied by Ravi Kumar Bandaru.They showed that every associative BRK-algebra was a group.The paper discussed relationship between N(2,2,0)algebra and BRK-algebra and then investigated several properties of ideal and filters of N(2,2,0)algebra.Finally,a quotient N(2,2,0)algebra was determined by a congruence on a p-radical set of N(2,2,0)algebra.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.251.83