Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces  被引量:2

在线阅读下载全文

作  者:Xingsong ZHANG Mingquan WEI Dunyan YAN Qianjun HE 

机构地区:[1]School of Mathematics,University of Chinese Academy of Sciences,Beijing 100049,China [2]School of Mathematics and Statistics,Xinyang Normal University,Xinyang 464000,China [3]School of Applied Science,Beijing Information Science and Technology University,Beijing 100192,China

出  处:《Frontiers of Mathematics in China》2020年第1期215-223,共9页中国高等学校学术文摘·数学(英文)

基  金:the National Natural Science Foundation of China(Grant No.11871452);the Project of Henan Provincial Department of Education(No.18A110028);the Nanhu Scholar Program for Young Scholars of XYNU.

摘  要:We will prove that for 1<p<∞and 0<λ<n,the central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mcγequals that of the centered Hardy-Littlewood maximal operator for all 0<γ<+∞.When p=1 and 0<λ<n,it turns out that the weak central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mcγequals that of the centered Hardy-Littlewood maximal operator for all 0<λ<+∞.Moreover,the same results are true for the truncated uncentered Hardy-Littlewood maximal operator.Our work extends the previous results of Lebesgue spaces to Morrey spaces.

关 键 词:HARDY-LITTLEWOOD MAXIMAL FUNCTION TRUNCATED HARDY-LITTLEWOOD MAXIMAL FUNCTION MORREY norms weak MORREY norms 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象