检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xingsong ZHANG Mingquan WEI Dunyan YAN Qianjun HE
机构地区:[1]School of Mathematics,University of Chinese Academy of Sciences,Beijing 100049,China [2]School of Mathematics and Statistics,Xinyang Normal University,Xinyang 464000,China [3]School of Applied Science,Beijing Information Science and Technology University,Beijing 100192,China
出 处:《Frontiers of Mathematics in China》2020年第1期215-223,共9页中国高等学校学术文摘·数学(英文)
基 金:the National Natural Science Foundation of China(Grant No.11871452);the Project of Henan Provincial Department of Education(No.18A110028);the Nanhu Scholar Program for Young Scholars of XYNU.
摘 要:We will prove that for 1<p<∞and 0<λ<n,the central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mcγequals that of the centered Hardy-Littlewood maximal operator for all 0<γ<+∞.When p=1 and 0<λ<n,it turns out that the weak central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mcγequals that of the centered Hardy-Littlewood maximal operator for all 0<λ<+∞.Moreover,the same results are true for the truncated uncentered Hardy-Littlewood maximal operator.Our work extends the previous results of Lebesgue spaces to Morrey spaces.
关 键 词:HARDY-LITTLEWOOD MAXIMAL FUNCTION TRUNCATED HARDY-LITTLEWOOD MAXIMAL FUNCTION MORREY norms weak MORREY norms
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.158.178